基于雙子段的信號(hào)頻率和相位估計(jì)的算法研究
本文選題:雙子段 + 相位差。 參考:《天津大學(xué)》2014年碩士論文
【摘要】:頻率和相位參數(shù)估計(jì)在雷達(dá)、通信、語音處理、故障診斷等領(lǐng)域至關(guān)重要。該問題通常以復(fù)指數(shù)信號(hào)疊加白噪聲背景作為數(shù)學(xué)模型,解決該問題離不開譜分析方法,F(xiàn)有的估計(jì)器都需借助內(nèi)插、迭代等措施對DFT結(jié)果進(jìn)行校正來確定真實(shí)頻率和相位值,如最近出現(xiàn)的Candan估計(jì)器、CO估計(jì)器等。然而這些估計(jì)器在精度、計(jì)算復(fù)雜度及方差預(yù)測等方面難以較好地折中,表現(xiàn)在:(1)大多數(shù)內(nèi)插估計(jì)器因估計(jì)原理做了數(shù)學(xué)理論近似,即使在無噪情況下也存在偏差;(2)有的估計(jì)器需要對很多DFT譜線綜合計(jì)算,耗費(fèi)了高復(fù)雜度;(3)大多數(shù)估計(jì)器沒有推導(dǎo)出頻率和相位估計(jì)方差的閉合理論表達(dá)式;(4)現(xiàn)有估計(jì)器在先估計(jì)頻率的前提下,再依據(jù)頻率估計(jì)結(jié)果去估計(jì)相位,這就引起誤差擴(kuò)散。為解決以上問題,本文提出雙子段頻率和相位估計(jì)法。該方法從apFFT的首、尾兩個(gè)子分段提取其FFT峰值譜相位差而獲得頻率估計(jì),對這兩個(gè)子分段的DFT相位值進(jìn)行對稱補(bǔ)償而獲得相位估計(jì)。為提高性能,還提出頻移補(bǔ)償和迭代的措施對估計(jì)器做了改進(jìn)。本文對提出的頻率估計(jì)器和相位估計(jì)器做了理論證明和數(shù)值仿真;诖硕撟C了本文估計(jì)器具有如下優(yōu)勢:(1)無論是頻率估計(jì)器還是相位估計(jì)器,估計(jì)器生成過程都沒有做數(shù)學(xué)上的理論近似,因而是無偏估計(jì)器;(2)估計(jì)器僅需提取前、后分段的單根峰值譜線的相位信息,做簡單運(yùn)算即可得估計(jì)結(jié)果,故計(jì)算復(fù)雜度低;(3)本文對估計(jì)器每一處理環(huán)節(jié)的參數(shù)方差都做了嚴(yán)格推導(dǎo),最終導(dǎo)出了頻率和相位估計(jì)方差的閉合理論表達(dá)式,及其兩參數(shù)模型相位估計(jì)方差的克拉美羅限,故可以提供方差預(yù)測依據(jù);(4)相位估計(jì)結(jié)果是通過對稱補(bǔ)償而得,不是依據(jù)頻率估計(jì)結(jié)果得到,故不存在誤差擴(kuò)散問題。因而克服了現(xiàn)有估計(jì)器的主要缺陷。仿真實(shí)驗(yàn)不僅驗(yàn)證了該閉合表達(dá)式的正確性,還證明了在大多數(shù)頻偏情況下,頻率估計(jì)均方誤差比apFFT/FFT相位差估計(jì)法和Candan估計(jì)器更接近于克拉美羅界,相位估計(jì)接近于兩參數(shù)克拉美羅限,故本文方法具有更高的測量精度。
[Abstract]:The estimation of frequency and phase parameters is very important in radar, communication, speech processing and fault diagnosis. This problem is usually based on the complex exponential signal superimposed white noise background as a mathematical model, which can not be solved without spectral analysis method. The existing estimators need to calibrate the DFT results by means of interpolation, iteration and other measures to determine the true frequency and phase values, such as the recent Candan estimators and CO estimators. However, these estimators are difficult to make a good compromise in terms of accuracy, computational complexity and variance prediction. Even in the case of noise-free, there are some estimators that need to synthetically calculate many DFT lines. Most estimators do not derive the closed theoretical expression of frequency and phase estimation variance. The existing estimators estimate the frequency first and then estimate the phase according to the frequency estimation results, which leads to error diffusion. In order to solve the above problems, a method of frequency and phase estimation is proposed. In this method, the FFT peak spectrum phase difference is extracted from the first and last sub-sections of apFFT, and the frequency estimation is obtained. The DFT phase values of the two sub-segments are compensated symmetrically and the phase estimates are obtained. In order to improve the performance, the frequency shift compensation and iterative measures are proposed to improve the estimator. In this paper, the proposed frequency estimator and phase estimator are theoretically proved and numerically simulated. Based on this, it is proved that the estimator has the following advantages: 1: 1) whether it is a frequency estimator or a phase estimator, neither the estimator nor the phase estimator has a mathematical theoretical approximation, so the estimator is an unbiased estimator only needs to be extracted before the estimator is extracted. The phase information of a single peak line in the back segment can be estimated by a simple operation, so the computational complexity is low.) in this paper, the variance of the parameters in each processing link of the estimator is strictly deduced. Finally, the closed theoretical expression of frequency and phase estimation variance and the Clemero limit of phase estimation variance of two-parameter model are derived, which can provide the basis for variance prediction.) the result of phase estimation is obtained by symmetrical compensation. It is not based on the frequency estimation result, so there is no error diffusion problem. Therefore, the main defects of the existing estimators are overcome. Simulation experiments not only verify the correctness of the closed expression, but also prove that in most frequency offset cases, the mean square error of frequency estimation is closer to the Kelamero bound than the apFFT/FFT phase difference estimation and Candan estimator. The phase estimation is close to the two-parameter Crameiro limit, so the method in this paper has higher measurement accuracy.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN911.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 霍兵勇;易偉建;;密集頻率數(shù)字信號(hào)的判定和校正方法[J];振動(dòng)與沖擊;2013年02期
2 黃翔東;朱晴晴;杜宇彬;蔣長麗;;有限帶寬信號(hào)的雙譜線比值壓縮感知重構(gòu)算法[J];信號(hào)處理;2012年06期
3 安國臣;張秀清;王曉君;孟志永;;離散頻譜的加權(quán)相位差校正方法[J];信號(hào)處理;2012年01期
4 胡文彪;夏立;向東陽;吳正國;;一種改進(jìn)的基于相位差法的頻譜校正方法[J];振動(dòng)與沖擊;2012年01期
5 徐其瑞;劉峰;;鋼軌探傷車技術(shù)發(fā)展與應(yīng)用[J];中國鐵路;2011年07期
6 張濤;任志良;陳光;孫常存;;改進(jìn)的全相位時(shí)移相位差頻譜分析算法[J];系統(tǒng)工程與電子技術(shù);2011年07期
7 黃翔東;王兆華;;全相位FFT相位測量法的抗噪性能[J];數(shù)據(jù)采集與處理;2011年03期
8 陳寧;萬茂文;;語音信號(hào)共振峰頻率估計(jì)的分段線性預(yù)測算法[J];計(jì)算機(jī)工程與應(yīng)用;2009年28期
9 王鳳鵬;鄒萬芳;尹真;岳彥芳;;希爾伯特變換實(shí)時(shí)全息干涉條紋相位提取[J];光電工程;2009年04期
10 黃翔東;王兆華;;全相位時(shí)移相位差頻譜校正法[J];天津大學(xué)學(xué)報(bào);2008年07期
,本文編號(hào):1907376
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1907376.html