基于受激布里淵散射的慢光研究
發(fā)布時間:2018-05-02 19:44
本文選題:受激布里淵散射 + 慢光 ; 參考:《北京郵電大學(xué)》2014年博士論文
【摘要】:隨著光纖的廣泛應(yīng)用,光通信得到了迅速的發(fā)展。在朝著通信指標高速寬帶演進的過程中,對光信號的處理也逐步探索在光域上完成。目前廣泛應(yīng)用的光通信器件,通過實現(xiàn)光電轉(zhuǎn)換,運用成熟的電信號處理技術(shù)來實現(xiàn)。受限于光電轉(zhuǎn)換效率、器件兼容等原因,通信器件也逐步要求光器件,以期達到在光域直接調(diào)控光信號,獲得整個通信系統(tǒng)性能的提升。在通信信號處理中,路由緩存是非常重要的特性,所以光緩存或光存儲的研究應(yīng)運而生。 慢光是諸多光存儲方案中較為有前景的技術(shù)方案之一。近十年時間,國內(nèi)外研究組對慢光進行了深入的研究。慢光的物理機制可描述為介質(zhì)受到強的外加場強產(chǎn)生增益區(qū),此增益區(qū)間由于K.K.關(guān)系(Kramers-Kronig關(guān)系)會產(chǎn)生折射率或相位的急劇變化,由群速度和折射率的關(guān)系,可推導(dǎo)群速度減慢從而產(chǎn)生慢光現(xiàn)象。 從光場對介質(zhì)產(chǎn)生增益峰的機制不同,有電磁誘導(dǎo)透明(EIT)、相干布居數(shù)震蕩(CPO)、耦合共振誘導(dǎo)透明(CRIT)、受激拉曼散射(SRS)、受激布里淵散射(SBS)、光參量放大(OPA)等。由研究介質(zhì)的不同,有冷凝鈉原子、光纖、光子晶體、波導(dǎo)等。由于SBS產(chǎn)生機制閾值較低、室溫條件、波長連續(xù)可調(diào)等特性,被認為是最具有應(yīng)用前景的方案之一。 本論文由此進行了基于SBS的慢光研究,主要在光纖介質(zhì)上進行。由搭建光纖SBS慢光系統(tǒng)展開,進行相關(guān)理論和實驗研究。首先理論仿真計算了SBS慢光延遲的極限,并由SBS慢光系統(tǒng)布里淵參數(shù)的測量和展寬增益譜的要求開展高精度器件的研究,包括基于SBS的光譜分析和光過濾器。最后探索在較低精度儀器系統(tǒng)下實現(xiàn)SBS慢光延遲及分析其性能,提升應(yīng)用可行性。本研究關(guān)鍵技術(shù)在于運用SBS產(chǎn)生的增益峰,導(dǎo)致折射率激變影響信號光的群速度,即所謂慢光。 本論文圍繞SBS慢光研究,主要在以下四個方面開展了創(chuàng)新研究工作:1.對SBS慢光系統(tǒng)的延遲極限進行討論,以此分析SBS慢光的光存儲延遲性能。通過使用基于(K.K.關(guān)系)的仿真模型,對單個脈沖和BPSK的延遲性能分別進行了計算。在常規(guī)SBS慢光系統(tǒng)中約32dB最大增益和500MHz增益帶寬情形下,2.5ns寬的單個脈沖的最大延遲為2.3ns(0.9bit),500MHz速率BPSK信號的最大延遲為2. Ins (lbit),它們的延遲帶寬積分別為1.2和1.1。2.由SBS慢光系統(tǒng)對參數(shù)布里淵增益譜的測量,探索了一種全光的高精度光譜測量方案。信號光譜的分辨率可達1OMHz,抑制比為33.5dB。并測量了實際的子載波復(fù)用信號(模擬OFDM信號)的光譜。3.由寬帶SBS慢光對增益譜譜形狀平坦、抑制比高等要求,結(jié)合SBS偏振方法提出了一種全光的高精度濾波器方案。獲得了寬帶增益譜產(chǎn)生的光濾波特性為譜寬250MHz-1GHz可調(diào);頂部傳輸抖動為1.5dB;選擇性為44dB。4.探索一種方法,在SBS慢光系統(tǒng)上實現(xiàn)較低精度儀器平臺的搭建,以有效的降低實驗儀器指標要求,提高應(yīng)用可行性。外差方法的監(jiān)控部件有效的降低了慢光系統(tǒng)對儀器的指標要求。在波長可調(diào)精度為1pm的激光器實現(xiàn)了32ns的延遲。相對延遲0.1bit,時延帶寬積0.96,時延增益比:0.80ns/dB.
[Abstract]:With the wide application of optical fiber, optical communication has developed rapidly. In the process of high-speed broadband evolution of the communication index, the processing of optical signal is gradually completed in the optical domain. At present, the widely used optical communication devices are realized by realizing photoelectric conversion and using mature signal processing technology. Efficiency, device compatibility and other reasons, communication devices also gradually require optical devices, in order to achieve direct control of optical signals in the optical domain, and improve the performance of the entire communication system. In communication signal processing, routing caching is a very important feature, so the research of optical caching or optical storage arises at the historic moment.
Slow light is one of the more promising technology schemes in many optical storage schemes. In recent ten years, the research team at home and abroad has studied slow light deeply. The physical mechanism of slow light can be described as the gain zone produced by strong external field intensity, which will produce refractive index or phase due to the K.K. relationship (Kramers-Kronig relationship). From the relationship between group velocity and refractive index, we can deduce group velocity and slow light phenomenon.
The mechanism of generating gain peaks from the light field to medium is different, such as electromagnetic induced transparency (EIT), coherent population number oscillation (CPO), coupled resonance induced transparency (CRIT), stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), optical parametric amplification (OPA), etc.. By the different medium, there are sodium condensate, optical fiber, photonic crystal, waveguide and so on. Due to SBS production It is considered to be one of the most promising schemes with low threshold, room temperature and continuous wavelength adjustment.
In this paper, the slow light research based on SBS is carried out mainly in the optical fiber medium. The development of the optical fiber SBS slow light system is carried out to carry out the related theory and experiment. Firstly, the limit of the slow light delay of SBS is simulated and calculated, and the high precision device is carried out by the measurement of the Brillouin parameter of the SBS slow light system and the requirement of the broadening gain spectrum. Research, including spectral analysis based on SBS and light filter. Finally, we explore the SBS slow light delay and analysis of its performance under the lower precision instrument system, and improve the application feasibility. The key technology of this study is to use the gain peak produced by SBS to cause the group velocity of the signal light to affect the refractive index shock, that is, the so-called slow light.
This thesis focuses on the SBS slow light research, mainly in the following four aspects: 1. the delay limit of the SBS slow light system is discussed in order to analyze the delay performance of SBS slow light storage. By using the simulation model based on (K.K.), the delay performance of single pulse and BPSK is calculated respectively. In the conventional SBS In the case of 32dB maximum gain and 500MHz gain bandwidth in the slow light system, the maximum delay of a single pulse for 2.5ns wide is 2.3ns (0.9bit), the maximum delay of the 500MHz rate BPSK signal is 2. Ins (Lbit), and their delay bandwidth product is 1.2 and 1.1.2. is measured by the SBS slow light system for the parameter Brillouin gain spectrum, and a whole light is explored. A high-precision spectral measurement scheme. The resolution of the signal spectrum is up to 1OMHz, the suppression ratio is 33.5dB. and the actual subcarrier multiplexing signal (analog OFDM signal).3. is made by the wideband SBS slow light on the gain spectrum shape and the high suppression ratio. A full optical high precision filter scheme is proposed in combination with the SBS polarization method. The optical filtering characteristics of the broadband gain spectrum are adjustable for the spectrum width 250MHz-1GHz, the top transmission jitter is 1.5dB, and the selective 44dB.4. exploration method is used to build the low precision instrument platform on the SBS slow light system, which can effectively reduce the requirements of the experimental instruments and improve the application feasibility. The monitoring components of the heterodyne method are effective. It reduces the requirement of the slow light system for the instrument. The 32ns is delayed by the laser with a wavelength adjustable precision of 1pm. The relative delay 0.1bit, the time delay bandwidth product 0.96, the time delay gain ratio: 0.80ns/dB.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TN929.1
【參考文獻】
相關(guān)期刊論文 前1條
1 盧超;毛幼菊;;慢光緩存器及其在光分組交換中的應(yīng)用[J];半導(dǎo)體光電;2007年03期
,本文編號:1835231
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1835231.html
最近更新
教材專著