天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 網絡通信論文 >

基于信號匹配和最優(yōu)分解層的小波去噪方法研究

發(fā)布時間:2018-05-01 23:55

  本文選題:信號去噪 + 濾波器。 參考:《揚州大學》2014年碩士論文


【摘要】:在信號采集、傳輸和處理過程中,不可避免會含有噪聲,直接影響后續(xù)處理的結果,因此如何對信號進行去噪處理,是目前信號處理領域中的國內外研究熱點問題之一。 目前關于信號去噪的方法很多,常用的去噪方法有基于傅立葉變換的信號去噪,由于傅立葉變換的時頻單一性,信號的去噪效果較差。小波變換具有時域局部化特征、多分辨率特性、解相關特性和選基靈活性等特征,已廣泛應用于雷達信號處理、語音識別、數據壓縮、信號處理、模式識別、信號去噪等領域。針對不同的含噪信號,對七種常規(guī)小波基的去噪性能進行分析與實驗比較,構造出基于結構化的9/7小波濾波器組和7/13小波濾波器組,并對其濾波器組進行性能分析比較。 不同的小波基具有不同的時頻特性,選擇的小波基不同,對應的去噪的效果也不相同,所以在去噪過程中,小波基的選擇,會直接影響小波去噪的效果,如何根據信號的特點選擇最佳小波基,是目前國內外學者的研究的關鍵問題。針對現有小波基的不足,提出一種基于信號匹配的最優(yōu)小波去噪方法。該方法根據信號在尺度空間的最大投影而構造的能量匹配準則,利用結構化小波濾波器組,結合遺傳算法,構造出與信號能量一致的最優(yōu)能量匹配小波。并根據波形匹配準則,結合結構化小波濾波器組,利用優(yōu)化函數構造出與信號波形一致的最優(yōu)波形匹配小波。實驗確定結果表明,基于信號匹配的最優(yōu)小波去噪方法的去噪效果優(yōu)于其它小波。 針對不同的信號去噪,除對不同小波基研究與最優(yōu)小波基選取外,還要對基于小波分解層數的信號去噪進行了研究,發(fā)現小波分解層數與含噪信號的受污染程度存在一定關系。在實際的信號小波去噪過程中,不同的含噪信號,其小波分解層數不固定,且不同分解層數會對去噪效果產生很大的影響,針對這一問題,提出一種基于最優(yōu)分解層去噪方法,該方法利用各個小波分解層的能量關系,即信噪比,結合優(yōu)化算法來確定最優(yōu)分解層進行去噪。實驗確定結果表明,在它的最優(yōu)分解層上的消噪效果達到了最佳。
[Abstract]:In the process of signal acquisition, transmission and processing, it is inevitable that there will be noise, which directly affects the results of subsequent processing. Therefore, how to Denoise the signal is one of the hot issues in the field of signal processing at home and abroad. At present, there are many methods of signal de-noising. The common methods of de-noising are based on Fourier transform. Because of the singularity of time-frequency of Fourier transform, the effect of signal de-noising is poor. Wavelet transform has been widely used in radar signal processing, speech recognition, data compression, signal processing, pattern recognition, signal denoising and so on. For different noisy signals, the performance of seven kinds of conventional wavelet bases is analyzed and compared by experiments. A structured 9 / 7 wavelet filter bank and a 7 / 13 wavelet filter bank are constructed, and the performance of the filter banks is analyzed and compared. Different wavelet bases have different time-frequency characteristics. Different wavelet bases have different corresponding denoising effects, so the selection of wavelet bases will directly affect the effect of wavelet denoising in the process of de-noising. How to select the best wavelet basis according to the characteristics of signal is the key problem of scholars at home and abroad. An optimal wavelet denoising method based on signal matching is proposed to overcome the shortcomings of existing wavelet bases. Based on the energy matching criterion constructed by the maximum projection of the signal in the scale space, the optimal energy matching wavelet which is consistent with the signal energy is constructed by using the structured wavelet filter bank and the genetic algorithm. According to the waveform matching criterion and the structured wavelet filter bank, the optimal waveform matching wavelet is constructed by using the optimization function. The experimental results show that the denoising effect of the optimal wavelet denoising method based on signal matching is better than that of other wavelets. For different signal denoising, besides the study of different wavelet bases and the selection of optimal wavelet bases, the signal denoising based on wavelet decomposition layers is also studied. It is found that the number of wavelet decomposition layers is related to the degree of contamination of noisy signals. In the actual signal wavelet denoising process, the wavelet decomposition layer number of different noisy signal is not fixed, and the different decomposition layer number will have a great influence on the de-noising effect. In view of this problem, a denoising method based on the optimal decomposition layer is proposed. In this method, the energy relationship of each wavelet decomposition layer, i.e. SNR, is used to determine the optimal decomposition layer for denoising. The experimental results show that the denoising effect on the optimal decomposition layer is the best.
【學位授予單位】:揚州大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN911.4

【參考文獻】

相關期刊論文 前10條

1 魏紅梅;黃世源;許飛;;小波包去噪在地震信號預處理中的應用[J];東北地震研究;2008年02期

2 許高峰,孫才新,唐炬,唐治德,張誠;基于小波變換抑制GIS局部放電監(jiān)測中白噪干擾的新方法研究[J];電工技術學報;2003年02期

3 陳清江;程正興;韓金倉;;二元多重雙正交小波包的性質[J];高等學校計算數學學報;2006年01期

4 李修文;陽建宏;黎敏;徐金梧;;基于移頻技術的短時傅里葉變換階比分析[J];北京科技大學學報;2012年10期

5 陳清江;王曉鳳;石智;;多元雙正交小波濾波器的構造[J];湖北大學學報(自然科學版);2009年03期

6 杜宇人;;一種基于輪廓特征的運動目標識別方法[J];江蘇大學學報(自然科學版);2009年05期

7 陳榮平;;多小波與多進小波濾波器研究[J];數學理論與應用;2006年02期

8 董小剛,秦喜文;信號消噪的小波處理方法及其應用[J];吉林師范大學學報(自然科學版);2003年02期

9 趙天姿;宋煒;王尚旭;;基于匹配追蹤算法的時頻濾波去噪方法[J];石油物探;2008年04期

10 簡濤;何友;蘇峰;曲長文;;小波分析在雷達信號處理中的應用展望[J];現代防御技術;2006年04期

相關博士學位論文 前2條

1 羅蓬;基于分數階Fourier變換的非平穩(wěn)信號處理技術研究[D];天津大學;2012年

2 丁愛玲;匹配小波構造方法及其應用研究[D];西安電子科技大學;2008年

,

本文編號:1831537

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1831537.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶d5bb2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com