天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于自適應粒子濾波算法的捷聯(lián)慣導初始對準方法研究

發(fā)布時間:2018-04-01 19:35

  本文選題:捷聯(lián)慣導 切入點:初始對準 出處:《哈爾濱工程大學》2014年碩士論文


【摘要】:粒子濾波(Particle Filter,簡稱PF)是一種性能優(yōu)越的非線性濾波算法。它對系統(tǒng)的狀態(tài)方程和量測方程以及噪聲統(tǒng)計特性均未加任何限制,因而相對于傳統(tǒng)的非線性濾波具有更寬廣的應用范圍。而且它突破了卡爾曼濾波體系下非線性濾波(EKF、UKF、CKF)的架構束縛,摒棄了對狀態(tài)變量均值和方差估計的思想,轉而通過從后驗概率密度中抽取采樣粒子,并對其進行迭代的預測和更新,來不斷逼近真實的后驗概率密度分布,從而更加的貼近最優(yōu)估計的本質。粒子濾波具有濾波精度高,收斂速度快等優(yōu)點,使得它已經(jīng)成為了在處理非線性、非高斯系統(tǒng)下狀態(tài)濾波和參數(shù)估計的主流濾波算法.本文圍繞粒子濾波在捷聯(lián)慣導大方位失準角背景下展開了如下的研究工作:首先,根據(jù)歐拉平臺誤差角推導了大方位失準角條件下捷聯(lián)慣導系統(tǒng)初始對準的誤差方程。在研究貝葉斯信號處理和蒙特卡洛(MonteCarlo)積分的的基礎上,引出序貫重要性重采樣(Sequential Importance Sample)粒子濾波算法,并給出目標跟蹤模型下的PF和UKF仿真對比。其次,針對標準粒子濾波算法中的缺點和不足,提出以下改進方法:一是標準粒子濾波當中直接選取先驗概率密度函數(shù)作為重要性密度函數(shù)進行采樣粒子,導致最新時刻的量測信息丟失,使得采樣的粒子過分依賴于狀態(tài)模型,當似然概率密度呈現(xiàn)尖峰狀態(tài)或是位于先驗概率密度函數(shù)尾部的時候很容易造成粒子退化。提出根據(jù)最新時刻的量測信息,給予重要性密度函數(shù)有目的的調整、修正,從而使得重要性密度函數(shù)能夠最大程度上的向后驗概率密度分布偏移。本文設計的算法是使用基于EKF、UKF、CKF濾波估計之后的均值和方差來產(chǎn)生了新的采樣粒子集群。給出分段非線性模型下的PF、EKPF、UPF、CPF的對比仿真分析。二是高維狀態(tài)估計中所需粒子數(shù)成級倍數(shù)增長,因而計算延遲,實時性不夠理想的情況,提出動態(tài)調節(jié)粒子數(shù),減少計算量。具體做法是將自適應技術引入到粒子濾波的重采樣之前,根據(jù)上一時刻對信號的估計精度來確定下一時刻估計所需要的粒子數(shù)。設計在目標跟蹤模型下的仿真來對比APF和PF的濾波性能,驗證自適應的有效性。三是將CPF和APF結合形成ACPF算法,新算法既通過CKF設計重要性密度函數(shù),提高了采樣效率;又根據(jù)上一時刻的估計狀態(tài)預測下一時刻所需要的粒子數(shù),實現(xiàn)了粒子動態(tài)調節(jié),減少了計算量。最后在飛行器機動飛行模型中,驗證ACPF的有效性。最后仿真在捷聯(lián)慣導初始對準非線性誤差模型下進行,給出ACPF和PF的仿真對比分析,證明算法改進的正確性和有效性。
[Abstract]:Particle filter Particle filter (PFR) is a nonlinear filtering algorithm with excellent performance. It has no restrictions on the state equation, measurement equation and noise statistical characteristics of the system. Therefore, compared with the traditional nonlinear filtering, it has a wider range of applications. Moreover, it breaks through the structural shackles of nonlinear filtering in Kalman filtering system and abandons the idea of estimating the mean and variance of state variables. Instead, sampling particles are extracted from the posterior probability density and iterated to predict and update them to continuously approach the true posterior probability density distribution, which is closer to the essence of the optimal estimation. Particle filter has high filtering accuracy. The advantages of fast convergence have made it more and more effective in dealing with nonlinearity. The main filtering algorithms of state filtering and parameter estimation in non-#china_person0# system. This paper focuses on particle filtering in the background of large azimuth misalignment angle of sins. According to the error angle of Euler platform, the error equation of sins initial alignment under the condition of large azimuth misalignment is derived. Based on the study of Bayesian signal processing and Monte Carlo integral, The sequential importance resampling Importance sampling (Sequential Importance sample) particle filter algorithm is introduced, and the simulation comparison between PF and UKF in the target tracking model is given. Secondly, the shortcomings and shortcomings of the standard particle filter algorithm are discussed. The following improved methods are proposed: first, the priori probability density function is directly selected as the importance density function to sample the particles in the standard particle filter, which results in the loss of measurement information at the latest time. When the likelihood probability density is in a peak state or at the end of a priori probability density function, it is easy to cause particle degradation. Give importance density function purposeful adjustment, correction, Therefore, the importance density function can offset the posterior probability density distribution to the maximum extent. The algorithm designed in this paper uses the mean value and variance after estimation based on EKFU UKFU CKF filter to generate a new sample particle cluster. The comparison and simulation analysis of the PFEK PFU CPF under the piecewise nonlinear model are given. The second is the increase of the number of particles required in the high dimensional state estimation. Therefore, when computing delay and real time are not ideal, a dynamic adjustment of particle number is proposed to reduce the computational load. The specific method is to introduce adaptive technology to the resampling of particle filter. The number of particles needed to estimate the signal at the next time is determined according to the estimation accuracy of the signal at the previous time. Simulation based on the target tracking model is designed to compare the filtering performance of APF and PF. The third is to combine CPF and APF to form ACPF algorithm. The new algorithm not only improves the sampling efficiency by designing the importance density function of CKF, but also predicts the number of particles needed at the next moment according to the estimated state of the previous time. Finally, the effectiveness of ACPF is verified in the flight model of aircraft maneuvering. Finally, the simulation is carried out under the nonlinear error model of initial alignment of sins, and the comparison between ACPF and PF is given. The correctness and validity of the improved algorithm are proved.
【學位授予單位】:哈爾濱工程大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN96;TN713

【參考文獻】

相關期刊論文 前9條

1 劉飛;馬林;;艦艇慣性導航技術現(xiàn)狀及發(fā)展趨勢[J];中國造船;2011年04期

2 王婷婷;郭圣權;;粒子濾波算法的綜述[J];儀表技術;2009年06期

3 程向紅;李伯龍;王宇;;基于PF的SINS動基座初始對準[J];中國慣性技術學報;2009年03期

4 崔平遠;孫新蕊;裴?;;一種基于自適應粒子濾波的捷聯(lián)初始對準方法研究[J];系統(tǒng)仿真學報;2008年20期

5 嚴恭敏;嚴衛(wèi)生;徐德民;;簡化UKF濾波在SINS大失準角初始對準中的應用[J];中國慣性技術學報;2008年03期

6 張琪;胡昌華;;動態(tài)粒子數(shù)粒子濾波算法研究[J];控制工程;2007年S3期

7 趙媛媛;葉亮;郭雷;;粒子數(shù)和采樣周期自適應的粒子濾波器[J];計算機工程與應用;2006年12期

8 鄧小龍;謝劍英;郭為忠;;用于狀態(tài)估計的自適應粒子濾波[J];華南理工大學學報(自然科學版);2006年01期

9 王丹力,張洪鉞;慣導系統(tǒng)初始對準的非線性濾波算法[J];中國慣性技術學報;1999年03期

相關博士學位論文 前5條

1 唐李軍;Cubature卡爾曼濾波及其在導航中的應用研究[D];哈爾濱工程大學;2012年

2 向禮;非線性濾波方法及其在導航中的應用研究[D];哈爾濱工業(yè)大學;2009年

3 梁軍;粒子濾波算法及其應用研究[D];哈爾濱工業(yè)大學;2009年

4 武元新;對偶四元數(shù)導航算法與非線性高斯濾波研究[D];國防科學技術大學;2005年

5 李濤;非線性濾波方法在導航系統(tǒng)中的應用研究[D];國防科學技術大學;2003年

,

本文編號:1697001

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1697001.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶963fd***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com