基于一維距離像的艦船目標識別技術研究
發(fā)布時間:2018-02-13 04:34
本文關鍵詞: 艦船目標識別 一維距離像 K分布海雜波 海雜波抑制 出處:《電子科技大學》2014年碩士論文 論文類型:學位論文
【摘要】:隨著高分辨雷達技術的日趨成熟,雷達目標自動識別技術在對海作戰(zhàn)、港口管理和海上搜救等方面發(fā)揮了重要的作用。高分辨一維距離像能夠反映目標散射中心沿雷達徑向的分布情況,具備數(shù)據(jù)容易獲取、處理相對簡單等優(yōu)點,受到了國內外許多學者的關注和研究;谝痪S距離像的目標識別算法,大多集中于飛機、導彈等空中目標,而艦船一維距離像受到的干擾主要來自海雜波,其特性與低分辨雷達瑞利雜波有所不同,大量研究表明,高分辨雷達海雜波的分布特性可以用K分布模型準確描述,因此,本文對K分布海雜波背景下的艦船目標一維距離像識別進行了研究,主要工作內容如下:1.以雷達目標的點散射中心模型為基礎,論述了解線性調頻技術的基本原理,并對該技術的處理過程進行了計算機仿真,得到了三類艦船目標在寬帶雷達下的一維距離像。研究分析了艦船目標一維距離像的三大敏感特性及其克服方法,并進行了仿真驗證。2.介紹了海雜波的K分布模型,研究了其對艦船目標一維距離像的成像以及形狀參數(shù)和尺度參數(shù)對特征提取的影響,并和同等信雜比條件下的瑞利雜波進行了對比分析。3.論述了模式識別領域中幾種經典的特征提取和分類器設計方法,結合仿真數(shù)據(jù),分析了這些方法各自的優(yōu)缺點。利用不同的特征提取方法和分類器,對K分布海雜波背景下的艦船目標進行一維距離像識別,通過蒙特卡洛實驗,對比了上述特征提取方法和分類器的性能及計算效率。4.研究了基于AR模型和基于奇異值分解的兩種海雜波抑制技術,并將兩者應用于低信雜比情況下的艦船目標一維距離像識別,通過理論分析和仿真實驗,對比了兩種海雜波抑制技術各自的優(yōu)缺點,其中基于AR模型的海雜波抑制技術的性能相對更好。艦船目標一維距離像受海雜波影響,導致特征的類間趨同性增加,通過引入海雜波抑制技術,可以提高低信雜比條件下的艦船目標一維距離像識別性能。
[Abstract]:With the development of high-resolution radar technology, automatic radar target recognition technology is fighting against the sea. Port management and maritime search and rescue play an important role. High-resolution one-dimensional range profiles can reflect the radial distribution of the target scattering center along the radar, and have the advantages of easy data acquisition and relatively simple processing. Many scholars at home and abroad have paid close attention to it. The target recognition algorithm based on one-dimensional range profile is mostly focused on aircraft, missile and other air targets, while the interference of ship one-dimensional range image is mainly from sea clutter. It is different from Rayleigh clutter in low resolution radar. A large number of studies show that the distribution characteristics of sea clutter in high resolution radar can be accurately described by K distribution model. In this paper, the recognition of one-dimensional range profile of ship target in the background of K-distributed sea clutter is studied. The main work is as follows: 1. Based on the point scattering center model of radar target, the basic principle of linear frequency modulation (LFM) technology is discussed. The processing process of this technology is simulated, and the one-dimensional range profile of three kinds of ship targets under wideband radar is obtained. The three sensitive characteristics of the one-dimensional range profile of ship targets and their overcoming methods are studied and analyzed. Secondly, the K distribution model of sea clutter is introduced, and the influence of shape parameters and scale parameters on feature extraction is studied. And compared with Rayleigh clutter under the same signal-to-clutter ratio. 3. Several classical feature extraction and classifier design methods in the field of pattern recognition are discussed, and the simulation data are combined. The advantages and disadvantages of these methods are analyzed. Different feature extraction methods and classifiers are used to identify ship targets under the background of K-distributed sea clutter. The performance and computational efficiency of the above feature extraction methods and classifiers are compared. 4. Two kinds of sea clutter suppression techniques based on AR model and singular value decomposition are studied. The two methods are applied to the range profile recognition of ship targets with low signal-to-clutter ratio. Through theoretical analysis and simulation experiments, the advantages and disadvantages of the two kinds of sea clutter suppression techniques are compared. The performance of sea clutter suppression technology based on AR model is better. The one-dimensional range profile of ship target is affected by sea clutter, which leads to the increase of inter-class convergence of features. The range profile recognition performance of ship target under low signal-to-clutter ratio can be improved.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN957.52
【參考文獻】
相關期刊論文 前1條
1 冷家旭;黃惠明;龍方;;基于剪輯支持向量機的雷達目標識別方法[J];艦船電子工程;2010年04期
,本文編號:1507328
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1507328.html
最近更新
教材專著