長磁絕緣傳輸線傳輸過程數(shù)值模擬研究
本文關(guān)鍵詞:長磁絕緣傳輸線傳輸過程數(shù)值模擬研究 出處:《電子科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 磁絕緣傳輸線 CHIPIC 數(shù)值模擬 高功率脈沖 單路脈沖功率真空裝置
【摘要】:近年來,隨著高功率脈沖技術(shù)在民用軍用以及高新技術(shù)領(lǐng)域的高速發(fā)展,許多發(fā)達國家開始著力開展對Z箍縮裝置的研究。磁絕緣傳輸線作為Z箍縮裝置的重要組成器件,磁絕緣傳輸線的設(shè)計和理論研究是關(guān)鍵性的技術(shù)核心,但是由于器件的結(jié)構(gòu)復(fù)雜、成本高,所以一般要求在投入實際的實驗之前對設(shè)計的磁絕緣傳輸線進行仿真模擬。本文主要是基于CHIPIC粒子模擬軟件平臺對磁絕緣傳輸線進行PIC模擬,不僅研究了磁絕緣傳輸線的基本理論,而且對關(guān)于傳輸線的設(shè)計也進行了比對分析,而后采用CHIPIC對單路脈沖功率真空裝置進行粒子模擬,為其投入實際實驗提供有力的保證。具體分為以下幾個內(nèi)容:首先,對磁絕緣傳輸線的基本理論進行分析,介紹了電子磁絕緣的穩(wěn)態(tài)流理論和非穩(wěn)態(tài)流理論,運用CHIPC粒子模擬軟件和MAGIC粒子模擬軟件同時對同一結(jié)構(gòu)進行PIC仿真,驗證CHIPIC在同軸磁絕緣傳輸線模型的模擬的正確性。其次,介紹了三種電磁模擬算法——中心差分算法、時偏算法和高品質(zhì)因數(shù)算法,并對同一結(jié)構(gòu)使用三種算法分別模擬研究,來研究三種算法所模擬的結(jié)果的區(qū)別。并且對不同網(wǎng)格劃分對于PIC模擬結(jié)果的影響做了簡單的介紹。再次,研究了同軸磁絕緣的設(shè)計需要注意的地方。不僅要選擇合適的負載二極管陰陽極之間的間距,還要根據(jù)實際的需要選擇合適的同軸磁絕緣傳輸線陰陽極間的間距,更要注意不同磁絕緣傳輸線相鏈接時,其阻抗匹配的問題。最后,研究了單路脈沖功率真空裝置中脈沖功率的饋入、匯聚及傳輸,在CHIPIC平臺上,采用多臺計算機進行分進程并行計算的方法,突破了單臺計算機的內(nèi)存及運行速度限制,對單路脈沖功率的饋入、匯聚及傳輸裝置進行建模,并設(shè)置相應(yīng)的參數(shù),從而對該大尺度裝置進行了整體模擬。不僅對1米長傳輸段的裝置進行了模擬,還對擁有12米長傳輸段的長磁絕緣傳輸線進行了模擬,模擬得到的該器件各個部分的陰陽極間電壓、陰陽極電流等一些重要的物理參數(shù)。模擬結(jié)果表明:該單路真空脈沖功率器件整體都可以保持磁絕緣狀態(tài),并達到了很好的功率匯聚的作用。該工作驗證了真空狀態(tài)下脈沖功率產(chǎn)生及傳輸器件的可行性,為進一步的實驗研究提供了有力保證。
[Abstract]:In recent years, with the rapid development of high power pulse technology in civil and military high-tech fields, many developed countries began to carry out research on Z pinch device. An important part of the magnetically insulated transmission line as Z pinch device, design and theoretical research of magnetically insulated transmission lines is the core technology of the key, but because the device has complicated structure, high cost, so the general requirements before put into the experimental design of the magnetically insulated transmission line simulation. This paper mainly CHIPIC particle simulation software platform of magnetically insulated transmission line based on PIC simulation, not only studies the basic theory of magnetically insulated transmission lines, and the design of transmission line were also compared, and then using CHIPIC particle simulation of single pulse power vacuum device, provide a powerful guarantee for the actual experiment. Divided into specific The following contents: firstly, the basic theory of magnetically insulated transmission line is analyzed, the steady-state magnetic insulation flow theory and unsteady flow theory, the use of CHIPC particle and PIC simulation of a structure simulation software and MAGIC simulation, the correctness of the simulation model of transmission line verification in CHIPIC coaxial magnetically insulated. Secondly, introduces three kinds of electromagnetic simulation algorithm -- central difference algorithm, partial algorithm and algorithm of high quality factor, and for the same structure using the three algorithms, simulation study, the difference of the three algorithms. The simulation results of different mesh for the effect of the simulation results of PIC to do a simple introduction. Again, on the need to pay attention to the design of coaxial magnetically insulated place. Not only to select the load distance between anode and cathode diode is appropriate, but also according to the actual need to select the appropriate The coaxial magnetically insulated transmission line spacing between yin and Yang, more attention should be paid to the different magnetically insulated transmission line link, the impedance matching problem. Finally, the single channel pulsed power vacuum device feeding, gathering and transmission, in the CHIPIC platform, using multiple computer calculation method the process of parallel, broke through the memory and the running speed of the single computer, for single pulse power feed, gathering and transmission device modeling, and set the corresponding parameters, and thus to the large scale of the overall simulation device. Not only for the 1 meter long transmission device section was simulated, for long the magnetic transmission section has 12 meters long insulated transmission line is simulated, simulation results of the device in various parts of the cathode and anode voltage, anode current and some important physical parameters. The simulation results show that the single pulse power vacuum The whole device can maintain magnetic insulation state and achieve good power convergence. This work verifies the feasibility of pulsed power generation and transmission devices in vacuum, and provides a strong guarantee for further experimental research.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN811
【相似文獻】
相關(guān)期刊論文 前10條
1 俞科云;殷虎;;電纜耦合的傳輸線分析預(yù)測技術(shù)[J];艦船電子工程;2009年06期
2 許雪梅;張鍵洋;倪蘭;劉麗娟;鄧聯(lián)文;杜作娟;;高速電子系統(tǒng)非均勻傳輸線輻射問題[J];浙江大學(xué)學(xué)報(工學(xué)版);2013年07期
3 張瑛;Janet M.Wang;肖亮;吳慧中;;傳輸線的隨機建模及瞬態(tài)響應(yīng)數(shù)值實驗分析[J];電子與信息學(xué)報;2006年08期
4 應(yīng)柏青;李瑞程;;無損耗均勻傳輸線的仿真研究[J];高校實驗室工作研究;2006年01期
5 崔文耀;張德斌;凌天慶;;利用簡單復(fù)合左右手傳輸線實現(xiàn)的任意雙頻器件[J];微波學(xué)報;2007年S1期
6 劉磊;崔翔;齊磊;;時域有限元法求解傳輸線瞬態(tài)波過程[J];中國電機工程學(xué)報;2008年03期
7 李有權(quán);付云起;張輝;袁乃昌;;基于傳輸線模型的高阻表面反射相位分析[J];物理學(xué)報;2009年06期
8 王春艷;張少華;周德儉;;非均勻傳輸線的仿真模型建立方法研究[J];電子科技;2010年02期
9 楊喬林;;計算機輔助傳輸線的瞬態(tài)分析[J];電子計算機動態(tài);1977年04期
10 ;用高性能測試系統(tǒng)測試高速組件時傳輸線的影響(上)[J];電子技術(shù);1991年05期
相關(guān)會議論文 前10條
1 李曉春;毛軍發(fā);陳彥鋒;;基于傳輸線模型的樹形互連線網(wǎng)的仿真[A];2003'全國微波毫米波會議論文集[C];2003年
2 唐e,
本文編號:1404710
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1404710.html