基于多傳感器網(wǎng)絡(luò)的導(dǎo)航系統(tǒng)完好性監(jiān)測(cè)與信息融合研究
本文關(guān)鍵詞:基于多傳感器網(wǎng)絡(luò)的導(dǎo)航系統(tǒng)完好性監(jiān)測(cè)與信息融合研究 出處:《南京航空航天大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 多傳感器網(wǎng)絡(luò) 幾何冗余配置 完好性監(jiān)測(cè) 故障診斷及隔離 小波分析 信息融合 濾波結(jié)構(gòu)
【摘要】:基于多傳感器網(wǎng)絡(luò)的導(dǎo)航系統(tǒng)是一種新的導(dǎo)航系統(tǒng)設(shè)計(jì)理念,將多個(gè)導(dǎo)航傳感器系統(tǒng)配置在載體(如飛行器、艦船等)的不同位置,為載體的導(dǎo)航提供冗余的分布式測(cè)量信息的同時(shí),還能提供計(jì)算載體電子設(shè)備局部運(yùn)動(dòng)補(bǔ)償?shù)膽T性信息。為了提高導(dǎo)航系統(tǒng)的性能,本文對(duì)多傳感器網(wǎng)絡(luò)的完好性監(jiān)測(cè)與信息融合關(guān)鍵技術(shù)進(jìn)行研究,主要研究?jī)?nèi)容和創(chuàng)新點(diǎn)如下: (1)分析了多傳感器導(dǎo)航系統(tǒng)的設(shè)計(jì)方法,給出了基于傳感器網(wǎng)絡(luò)的系統(tǒng)模型,并分析了多傳感器數(shù)據(jù)融合結(jié)構(gòu)。在此基礎(chǔ)上著重研究了多傳感器網(wǎng)絡(luò)節(jié)點(diǎn)的最優(yōu)化配置方法,給出了冗余傳感器最優(yōu)配置準(zhǔn)則,使用平均故障時(shí)間參數(shù)對(duì)配置的可靠性進(jìn)行分析,并利用單傳感器可靠性貢獻(xiàn)參數(shù)對(duì)導(dǎo)航系統(tǒng)的冗余傳感器數(shù)目進(jìn)行優(yōu)化。由上述的研究,給出了一系列常用的傳感器系統(tǒng)節(jié)點(diǎn)配置的最優(yōu)化方案。 (2)研究了多傳感器導(dǎo)航系統(tǒng)的完好性監(jiān)測(cè)方法,采用移動(dòng)窗口廣義似然比(MW-GLRT)完好性監(jiān)測(cè)算法解決了廣義似然比法(GLRT)對(duì)于特征向量提取不精確和樣本奇偶向量對(duì)故障的敏感程度隨時(shí)間的累積而下降的問(wèn)題,顯著提高了導(dǎo)航系統(tǒng)的可靠性;針對(duì)導(dǎo)航冗余信息不足時(shí)只能判斷故障而無(wú)法隔離故障的問(wèn)題,采用小波變換結(jié)合奇偶校驗(yàn)的綜合算法,通過(guò)選取小波基和小波分解層數(shù)使檢測(cè)函數(shù)對(duì)傳感器故障的敏感程度區(qū)別于載體的機(jī)動(dòng),將奇偶校驗(yàn)函數(shù)作為故障檢測(cè)隔離的保險(xiǎn)裝置,通過(guò)階躍和斜坡故障的仿真分析驗(yàn)證了上述算法的有效性。 (3)研究了多傳感器信息融合理論,分析了常用的濾波結(jié)構(gòu)。在此基礎(chǔ)上提出了虛擬傳感器及其信息融合算法,對(duì)多傳感器節(jié)點(diǎn)降階處理后進(jìn)行信息濾波融合,仿真驗(yàn)證可得單節(jié)點(diǎn)多傳感器系統(tǒng)通過(guò)使用該融合算法能得到高精度的相對(duì)于正交軸的測(cè)量估計(jì)值;進(jìn)一步提出了一種適用于多節(jié)點(diǎn)導(dǎo)航系統(tǒng)的分布式信息融合算法,包括分布式系統(tǒng)結(jié)構(gòu)、測(cè)量模型和融合算法,通過(guò)仿真驗(yàn)證可得,該算法充分利用了各節(jié)點(diǎn)的測(cè)量信息,有效提高了系統(tǒng)的狀態(tài)估計(jì)性能。 (4)建立了基于多傳感器網(wǎng)絡(luò)導(dǎo)航系統(tǒng)的數(shù)字仿真模型,包括軌跡生成、完好性監(jiān)測(cè)、信息融合等模塊;并設(shè)計(jì)一個(gè)半實(shí)物硬件仿真平臺(tái),并進(jìn)行了初步實(shí)現(xiàn)。 本文針對(duì)基于傳感器網(wǎng)絡(luò)的導(dǎo)航系統(tǒng),研究了多傳感器網(wǎng)絡(luò)的完好性監(jiān)測(cè)和信息融合新方法,,針對(duì)其關(guān)鍵技術(shù)提出了有效的解決方法,在理論方法上取得了較好的創(chuàng)新性研究成果,為未來(lái)高性能導(dǎo)航系統(tǒng)設(shè)計(jì)提供一定的借鑒意義和應(yīng)用價(jià)值。
[Abstract]:The navigation system based on multi-sensor network is a new design concept of navigation system, which configures multiple navigation sensor systems in different positions of carriers (such as aircraft, ships, etc.). While providing redundant distributed measurement information for carrier navigation, it can also provide inertial information to calculate the local motion compensation of carrier electronic equipment, in order to improve the performance of navigation system. In this paper, the key technologies of integrity monitoring and information fusion in multi-sensor networks are studied. The main research contents and innovations are as follows: 1) the design method of multi-sensor navigation system is analyzed, and the system model based on sensor network is given. Based on the analysis of multi-sensor data fusion structure, the optimal configuration method of multi-sensor network nodes is studied, and the optimal configuration criteria of redundant sensors are given. The reliability of the configuration is analyzed by using the average fault time parameter, and the number of redundant sensors in the navigation system is optimized by using the single sensor reliability contribution parameter. This paper presents a series of commonly used optimization schemes for sensor system node configuration. 2) the integrity monitoring method of multi-sensor navigation system is studied. The generalized likelihood ratio (GML) method is used to solve the problem of MW-GLRTT (Generalized likelihood ratio) of moving window. For feature vector extraction imprecision and sample odd-even vector sensitivity to the fault decreases with the accumulation of time. The reliability of navigation system is improved significantly. Aiming at the problem that the fault can only be judged but not isolated when the redundant information of navigation is insufficient, a comprehensive algorithm of wavelet transform combined with parity check is adopted. By selecting wavelet basis and wavelet decomposition layers, the sensitivity of detection function to sensor fault is different from that of carrier, and parity check function is used as the safety device for fault detection and isolation. The effectiveness of the algorithm is verified by the simulation analysis of step and slope faults. Thirdly, the theory of multi-sensor information fusion is studied, and the common filter structure is analyzed. Based on this, a virtual sensor and its information fusion algorithm are proposed. After reducing the order of the multi-sensor nodes, the information filtering fusion is carried out, and the simulation results show that the single-node multi-sensor system can get the high accuracy relative to the quadrature axis by using the fusion algorithm. Furthermore, a distributed information fusion algorithm for multi-node navigation system is proposed, including the structure of distributed system, measurement model and fusion algorithm, which can be verified by simulation. The algorithm makes full use of the measurement information of each node and effectively improves the performance of the system state estimation. (4) A digital simulation model based on multi-sensor network navigation system is established, including track generation, integrity monitoring, information fusion and so on. The hardware simulation platform is designed and implemented. For the navigation system based on sensor network, this paper studies a new method of integrity monitoring and information fusion of multi-sensor network, and puts forward an effective solution to its key technology. Good innovative research results have been obtained in theory and method, which will provide some reference and application value for the design of high performance navigation system in the future.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP212.9;TN96
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏春嶺,張洪鉞;多傳感器斜置系統(tǒng)故障檢測(cè)的奇偶向量補(bǔ)償方法[J];北京航空航天大學(xué)學(xué)報(bào);2001年06期
2 富立;王新玲;岳亞洲;;基于可靠性分析的最優(yōu)冗余配置數(shù)量確定方法[J];北京航空航天大學(xué)學(xué)報(bào);2010年09期
3 岑朝輝;魏蛟龍;蔣睿;;Mallat小波快速變換與IDRNN在衛(wèi)星實(shí)時(shí)故障檢測(cè)與識(shí)別中的應(yīng)用[J];北京科技大學(xué)學(xué)報(bào);2012年01期
4 侯彥東;陳志國(guó);湯天浩;;多傳感器故障檢測(cè)與隔離算法[J];化工學(xué)報(bào);2010年08期
5 鈕永勝,趙新民,孫金瑋;傳感器故障診斷方法研究[J];航天控制;1996年04期
6 夏常弟,李治;傳感器故障診斷中確定閾值的隨機(jī)變量方法[J];控制與決策;1997年02期
7 文成林;胡玉成;;基于信息增量矩陣的故障診斷方法[J];自動(dòng)化學(xué)報(bào);2012年05期
8 劉劍慰;姜斌;;基于動(dòng)態(tài)奇偶空間法的傳感器故障診斷[J];控制工程;2012年05期
9 劉準(zhǔn),陳哲;INS/GPS/TERCOM組合制導(dǎo)系統(tǒng)中的信息融合方法研究[J];宇航學(xué)報(bào);2001年03期
10 賈鵬;張洪鉞;;基于奇異值分解的冗余慣導(dǎo)系統(tǒng)故障診斷[J];宇航學(xué)報(bào);2006年05期
本文編號(hào):1403327
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1403327.html