用無截斷方法計算靜態(tài)和動態(tài)黑洞統(tǒng)計熵
發(fā)布時間:2018-10-11 12:45
【摘要】:自從黑洞概念被提出之后,有關(guān)黑洞和黑洞熵的研究被物理學家廣泛關(guān)注。多年來,理論研究者們致力于黑洞的本質(zhì)及黑洞熵的統(tǒng)計起源的研究。本文主要采用無截斷方法計算靜態(tài)和動態(tài)黑洞統(tǒng)計熵。 第一章簡要介紹黑洞熱力學定律和黑洞熵的基本概念,分別介紹靜態(tài)黑洞的熱效應和靜態(tài)黑洞事件視界的確定。還介紹了動態(tài)黑洞的基本力學定律、動態(tài)黑洞的熱效應和動態(tài)黑洞事件視界的定義。 第二章介紹兩種計算黑洞熵的模型—“磚墻模型”和“薄層模型”,指出了兩種模型所存在的不足!按u墻模型”只能適用于靜態(tài)和穩(wěn)態(tài)黑洞,“薄層模型”可以適用于各種靜態(tài)和動態(tài)黑洞熵的計算。但都需要采用截斷。 在第三章中,作者應用無截斷方法計算了靜態(tài)黑洞和動態(tài)黑洞的統(tǒng)計熵。首先介紹了位置與動量的廣義測不準關(guān)系,對相應的微觀狀態(tài)態(tài)密度方程作出修正,,應用指數(shù)修正的態(tài)密度方程得到的黑洞外物質(zhì)場的量子態(tài)數(shù)在視界處是收斂的;最后用指數(shù)修正的態(tài)密度方程計算靜態(tài)G-H-S黑洞、動態(tài)Vaidya黑洞、動態(tài)Vaidya-de Sitter黑洞和動態(tài)Vaidya-Bonner黑洞的統(tǒng)計力學熵,不需要采取截斷。對比動態(tài)黑洞統(tǒng)計熵和靜態(tài)黑洞統(tǒng)計熵的數(shù)學形式,可以看出,動態(tài)黑洞統(tǒng)計熵比起相對應的靜態(tài)黑洞統(tǒng)計熵多出一個與視界變化率有關(guān)的修正因子。
[Abstract]:Since the concept of black hole was put forward, the study of black hole and black hole entropy has been paid more and more attention by physicists. For many years, theoretical researchers have focused on the nature of black holes and the statistical origin of black hole entropy. In this paper, the statistical entropy of static and dynamic black holes is calculated by means of no truncation method. In the first chapter, the thermodynamic law of black hole and the basic concept of black hole entropy are briefly introduced. The thermal effect of static black hole and the determination of event horizon of static black hole are introduced respectively. The basic mechanics law of dynamic black hole, the thermal effect of dynamic black hole and the definition of event horizon of dynamic black hole are also introduced. In chapter 2, two models for calculating black hole entropy, brick wall model and thin layer model, are introduced, and the shortcomings of the two models are pointed out. The "brick wall model" can only be applied to static and steady black holes, and the "thin layer model" can be used to calculate the entropy of all kinds of static and dynamic black holes. But both need to be truncated. In chapter 3, the statistical entropy of static and dynamic black holes is calculated by using the untruncated method. Firstly, the generalized uncertainty relation between position and momentum is introduced, and the corresponding microcosmic state density equation is modified. The quantum state number of the matter field outside the black hole obtained by the exponential modified state density equation is convergent at the horizon. Finally, the statistical mechanical entropy of static G-H-S black hole, dynamic Vaidya black hole, dynamic Vaidya-de Sitter black hole and dynamic Vaidya-Bonner black hole is calculated by exponentially modified density of states equation, and no truncation is required. By comparing the statistical entropy of the dynamic black hole with the statistical entropy of the static black hole, it can be seen that the statistical entropy of the dynamic black hole is a correction factor related to the change rate of the event horizon compared with the corresponding statistical entropy of the static black hole.
【學位授予單位】:湖南科技大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:P145.8
本文編號:2264241
[Abstract]:Since the concept of black hole was put forward, the study of black hole and black hole entropy has been paid more and more attention by physicists. For many years, theoretical researchers have focused on the nature of black holes and the statistical origin of black hole entropy. In this paper, the statistical entropy of static and dynamic black holes is calculated by means of no truncation method. In the first chapter, the thermodynamic law of black hole and the basic concept of black hole entropy are briefly introduced. The thermal effect of static black hole and the determination of event horizon of static black hole are introduced respectively. The basic mechanics law of dynamic black hole, the thermal effect of dynamic black hole and the definition of event horizon of dynamic black hole are also introduced. In chapter 2, two models for calculating black hole entropy, brick wall model and thin layer model, are introduced, and the shortcomings of the two models are pointed out. The "brick wall model" can only be applied to static and steady black holes, and the "thin layer model" can be used to calculate the entropy of all kinds of static and dynamic black holes. But both need to be truncated. In chapter 3, the statistical entropy of static and dynamic black holes is calculated by using the untruncated method. Firstly, the generalized uncertainty relation between position and momentum is introduced, and the corresponding microcosmic state density equation is modified. The quantum state number of the matter field outside the black hole obtained by the exponential modified state density equation is convergent at the horizon. Finally, the statistical mechanical entropy of static G-H-S black hole, dynamic Vaidya black hole, dynamic Vaidya-de Sitter black hole and dynamic Vaidya-Bonner black hole is calculated by exponentially modified density of states equation, and no truncation is required. By comparing the statistical entropy of the dynamic black hole with the statistical entropy of the static black hole, it can be seen that the statistical entropy of the dynamic black hole is a correction factor related to the change rate of the event horizon compared with the corresponding statistical entropy of the static black hole.
【學位授予單位】:湖南科技大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:P145.8
【參考文獻】
相關(guān)期刊論文 前10條
1 高長軍,趙崢;用膜模型計算Schwarzschild -de Sitter黑洞的熵[J];北京師范大學學報(自然科學版);2000年03期
2 景玲,周宙安,劉文彪;測不準關(guān)系與Schwarzschild-de Sitter黑洞熵[J];北京師范大學學報(自然科學版);2003年05期
3 牛振風,李翔,趙崢;利用廣義不確定關(guān)系計算Vaidya-de Sitter黑洞的熵[J];北京師范大學學報(自然科學版);2003年06期
4 劉成周,周宙安,李翔,趙崢;廣義不確定原理對一般靜態(tài)黑洞熵的影響[J];北京師范大學學報(自然科學版);2004年04期
5 張子珍;張麗春;趙仁;;柱黑洞的熵[J];數(shù)學物理學報;2005年S1期
6 張鎮(zhèn)九;黑洞物理[J];天文學進展;1984年04期
7 羅志強,趙崢;變加速直線運動黑洞的量子熱效應[J];物理學報;1993年03期
8 宋太平,姚國政;一般球?qū)ΨQ帶電蒸發(fā)黑洞的溫度[J];物理學報;2002年05期
9 張靖儀,趙崢;直線加速動態(tài)黑洞Dirac場的熵[J];物理學報;2002年10期
10 朱斌,姚國政,趙崢;帶有電荷與磁荷的直線加速動態(tài)黑洞的熵[J];物理學報;2002年11期
本文編號:2264241
本文鏈接:http://www.sikaile.net/kejilunwen/tianwen/2264241.html