三級領導式的快速自適應狼群優(yōu)化算法
發(fā)布時間:2021-09-25 10:30
為提高狼群算法的收斂速度,在此提出了一種稱為三級領導式和微粒進化方程的自適應狼群算法,人為地把灰狼分成兩類,領導層三只灰狼:如αβ和δ,剩下的為猛狼w。在游走搜索階段隨機設定一個獵物位置,利用狼群與獵物之間的距離來指導游走搜索獵物;在召喚階段,利用三個領導層灰狼作為頭狼來引導猛狼向獵物靠近,避免了傳統(tǒng)狼群算法只有一只頭狼引導整個狼群就容易陷入局部最優(yōu)的情況;在圍攻獵物階段利用慣性因子來表示以往奔襲的經驗、學習因子與隨機數(shù)之間的乘積來表示猛狼自身經驗的認識與總結、迭代影響因子來表示整體狼群經驗的認識與調整,綜合起來狼群粒子奔襲速度加快收斂速度和跳出局部最優(yōu),從而找到真實的整體最優(yōu)值。本次選取的8個測試函數(shù)對應的對比性實驗結果表明:該方法較為精確地實現(xiàn)尋找到了測試函數(shù)的最優(yōu)值且較早地快速收斂到最優(yōu)解,在后期也平穩(wěn)收斂到真實的最優(yōu)值,該算法適用于多維多波峰函數(shù)求極值問題。
【文章來源】:計算機工程與應用. 2019,55(15)北大核心CSCD
【文章頁數(shù)】:10 頁
【部分圖文】:
狼群等級(優(yōu)勢度自上而下降低)
其他方法快得多。與其他兩種算法相比,時間消耗多出了0.002~0.250s,主要是用于判斷當前三個領導頭狼的適應函數(shù)值,再決定由哪個作為當前尋優(yōu)的領導者而引起的計算時間。以及對于同規(guī)模函數(shù)消耗的時間要多些,主要是在攻擊階6005004003002001001002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao140120100806040200F11(x1,x2)0Parameterspace5005005000500x2x1圖2第一次實驗F11函數(shù)和搜索迭代圖121086421002003004005000IterationBestscoreobtainedsofar/108ObjectivespaceGWO[1]GWO[2]GWOChenChao14121086420F13(x1,x2)0Parameterspace55505x2x1圖3第一次實驗F13函數(shù)和搜索迭代圖450400350300250200150100501002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao5004003002001000F14(x1,x2)0Parameterspace1001001000100x2x150505050圖4第一次實驗F14函數(shù)和搜索迭代圖302520151051002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao3.02.52.01.51.00.50F18(x1,x2)/1080Parameterspace55505x2x1圖5第一次實驗
btainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao140120100806040200F11(x1,x2)0Parameterspace5005005000500x2x1圖2第一次實驗F11函數(shù)和搜索迭代圖121086421002003004005000IterationBestscoreobtainedsofar/108ObjectivespaceGWO[1]GWO[2]GWOChenChao14121086420F13(x1,x2)0Parameterspace55505x2x1圖3第一次實驗F13函數(shù)和搜索迭代圖450400350300250200150100501002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao5004003002001000F14(x1,x2)0Parameterspace1001001000100x2x150505050圖4第一次實驗F14函數(shù)和搜索迭代圖302520151051002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao3.02.52.01.51.00.50F18(x1,x2)/1080Parameterspace55505x2x1圖5第一次實驗F18函數(shù)和搜索迭代圖00.040.080.120.160.20F20(x1,x2)0Parameterspace55505x2x11.61.82.02.22.42.62.83.03.23.41002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]
本文編號:3409560
【文章來源】:計算機工程與應用. 2019,55(15)北大核心CSCD
【文章頁數(shù)】:10 頁
【部分圖文】:
狼群等級(優(yōu)勢度自上而下降低)
其他方法快得多。與其他兩種算法相比,時間消耗多出了0.002~0.250s,主要是用于判斷當前三個領導頭狼的適應函數(shù)值,再決定由哪個作為當前尋優(yōu)的領導者而引起的計算時間。以及對于同規(guī)模函數(shù)消耗的時間要多些,主要是在攻擊階6005004003002001001002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao140120100806040200F11(x1,x2)0Parameterspace5005005000500x2x1圖2第一次實驗F11函數(shù)和搜索迭代圖121086421002003004005000IterationBestscoreobtainedsofar/108ObjectivespaceGWO[1]GWO[2]GWOChenChao14121086420F13(x1,x2)0Parameterspace55505x2x1圖3第一次實驗F13函數(shù)和搜索迭代圖450400350300250200150100501002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao5004003002001000F14(x1,x2)0Parameterspace1001001000100x2x150505050圖4第一次實驗F14函數(shù)和搜索迭代圖302520151051002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao3.02.52.01.51.00.50F18(x1,x2)/1080Parameterspace55505x2x1圖5第一次實驗
btainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao140120100806040200F11(x1,x2)0Parameterspace5005005000500x2x1圖2第一次實驗F11函數(shù)和搜索迭代圖121086421002003004005000IterationBestscoreobtainedsofar/108ObjectivespaceGWO[1]GWO[2]GWOChenChao14121086420F13(x1,x2)0Parameterspace55505x2x1圖3第一次實驗F13函數(shù)和搜索迭代圖450400350300250200150100501002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao5004003002001000F14(x1,x2)0Parameterspace1001001000100x2x150505050圖4第一次實驗F14函數(shù)和搜索迭代圖302520151051002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]GWOChenChao3.02.52.01.51.00.50F18(x1,x2)/1080Parameterspace55505x2x1圖5第一次實驗F18函數(shù)和搜索迭代圖00.040.080.120.160.20F20(x1,x2)0Parameterspace55505x2x11.61.82.02.22.42.62.83.03.23.41002003004005000IterationBestscoreobtainedsofarObjectivespaceGWO[1]GWO[2]
本文編號:3409560
本文鏈接:http://www.sikaile.net/kejilunwen/sousuoyinqinglunwen/3409560.html
教材專著