天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 水利工程論文 >

復(fù)合土工膜心墻堆石壩應(yīng)力變形分析

發(fā)布時(shí)間:2018-07-04 13:23

  本文選題:復(fù)合土工膜 + 堆石壩; 參考:《蘭州交通大學(xué)》2014年碩士論文


【摘要】:復(fù)合土工膜心墻堆石壩是水工結(jié)構(gòu)中的重要壩型之一,因其筑壩材料取材方便、機(jī)械化施工簡(jiǎn)單、施工周期短、成本低等特點(diǎn)以及復(fù)合土工膜心墻良好的適應(yīng)變形能力、耐酸堿性能、抗沖蝕、抗老化、防滲性能好等優(yōu)點(diǎn),迄今為止已被廣泛運(yùn)用于水利水電工程中。然而,復(fù)合土工膜心墻堆石壩的應(yīng)力變形問題也將成為其設(shè)計(jì)施工的核心問題。 本文簡(jiǎn)單介紹了堆石壩的特點(diǎn)、土工膜防滲體的研究現(xiàn)狀,根據(jù)已有的研究成果,通過比較選取鄧肯-張E B模型作為堆石體的本構(gòu)模型,采用土工柵格單元和Goodman單元模擬了復(fù)合土工膜和接觸面,論證了振型分解反應(yīng)譜法在堆石壩地震反應(yīng)分析中的應(yīng)用;谕晾碚摵蛡鹘y(tǒng)有限元法,以白龍江某復(fù)合土工膜心墻堆石壩為例,建立三維有限元模型,并結(jié)合MIDAS/GTS大型巖土分析軟件,對(duì)竣工期、正常蓄水期以及正常蓄水期加8度地震作用三種工況下壩體和復(fù)合土工膜心墻的應(yīng)力變形進(jìn)行了模擬,計(jì)算了無膜情況下壩體的應(yīng)力和變形,并分析了復(fù)合土工膜對(duì)壩體應(yīng)力變形的影響。 通過分析得出:竣工期,壩體和復(fù)工土工膜的應(yīng)力、變形都很小基本呈對(duì)稱分布,且都表現(xiàn)為受壓不會(huì)出現(xiàn)拉伸破壞,壩體最大應(yīng)力出現(xiàn)在壩底,位移主要表現(xiàn)為沉降變形,,且最大沉降發(fā)生在壩體三分之二處,而復(fù)合土工膜不僅受自重的影響,還依附于壩體的變形,其變形量比壩體的大;正常蓄水期,在水壓力作用下,應(yīng)力和變形不再呈對(duì)稱分布,基本發(fā)生在水壓力作用面附近。壩體和復(fù)合土工膜都在水位以上部位向上游移動(dòng)表現(xiàn)為拉應(yīng)力,水位以下依然受壓,且向下游移動(dòng)。無論是竣工期還是正常蓄水期,壩體和復(fù)合土工膜小主應(yīng)力都表現(xiàn)為受壓,只有大主應(yīng)力出現(xiàn)了局部受拉,壩體發(fā)生在底部,而復(fù)合土工膜發(fā)生在與山體連接的部位。加8度地震作用后,拉應(yīng)力區(qū)范圍擴(kuò)大,壩體拉應(yīng)力主要分布在堆石區(qū)主要部位,復(fù)合土工膜依然出現(xiàn)在與相鄰構(gòu)件連接的部位,變形在水平方向壩體連同心墻整體移向下游,而豎直方向都出現(xiàn)了上抬現(xiàn)象。無膜情況下,壩體跟有膜情況下的應(yīng)力變形規(guī)律基本一樣,只是應(yīng)力和變形都增大。由此可見:三種工況下,壩體和復(fù)合土工膜都從初始的受壓狀態(tài)依次出現(xiàn)了拉應(yīng)力,地震作用下受拉區(qū)范圍擴(kuò)大,且拉應(yīng)力增大。復(fù)合土工膜在連接部位出現(xiàn)了明顯的應(yīng)力集中現(xiàn)象;變形由最初的整體沉降變形過渡到局部水平再轉(zhuǎn)化為整體水平及上抬狀態(tài),且膜的變形除了自身的變形外主要依附于壩體的變形。跟無膜情況相比較,復(fù)合土工膜不僅起到防滲作用,而且對(duì)壩體的應(yīng)力變形有很大的改善,很大程度上抑制了壩體的應(yīng)力和變形。
[Abstract]:The composite geomembrane core wall rockfill dam is one of the important dam types in hydraulic structure. Because of its advantages of convenient material selection, simple mechanized construction, short construction period and low cost, the composite geomembrane core wall has good adaptability to deformation. So far, it has been widely used in water conservancy and hydropower engineering because of its advantages of acid and alkali resistance, erosion resistance, aging resistance and good impermeability. However, the stress and deformation of composite geomembrane core wall rockfill dam will also become the core problem in its design and construction. In this paper, the characteristics of rockfill dam and the research status of geomembrane impervious body are briefly introduced. According to the existing research results, Duncan Zhang E B model is selected as the constitutive model of rockfill. The composite geomembrane and contact surface were simulated by using geo-grid element and Goodman element, and the application of mode decomposition response spectrum method in seismic response analysis of rockfill dam was demonstrated. Based on soil theory and traditional finite element method, a 3D finite element model of a composite geomembrane core wall rockfill dam in Bailongjiang is established, and the completion period of the dam is analyzed with Midas / GTS large-scale geotechnical analysis software. The stress and deformation of dam body and composite geomembrane core wall under three working conditions of normal storage period and normal storage period plus 8 degree earthquake are simulated, and the stress and deformation of dam body without film are calculated. The influence of composite geomembrane on stress and deformation of dam is analyzed. Through analysis, it is concluded that the stress and deformation of the dam body and the rework geomembrane are all symmetrical distribution basically in the period of completion, and they all show that there will be no tensile damage under compression, the maximum stress of the dam body appears at the bottom of the dam, and the displacement is mainly shown as settlement deformation. The maximum settlement occurs at 2/3 of the dam body, and the composite geomembrane is not only affected by the deadweight, but also attached to the deformation of the dam body, which is larger than that of the dam body, and in the normal water storage period, under the action of water pressure, Stress and deformation are no longer symmetrically distributed and occur near the surface of water pressure. Both the dam body and the composite geomembrane move to the upper reaches of the water level under tensile stress, and are still under pressure below the water level, and move downstream. The small principal stresses of dam body and composite geomembrane appear as compression, only the large principal stress appears local tension, the dam body occurs at the bottom, and the composite geomembrane occurs in the part connected with the mountain body, no matter in the completion period or in the normal water storage period. After adding 8 degrees earthquake, the range of tensile stress zone is enlarged, the tensile stress of dam body is mainly distributed in the main part of the rockfill area, the composite geomembrane still appears in the position connected with the adjacent members, and the deformation is moved downstream along with the core wall in the horizontal direction. And the vertical direction all appeared up the phenomenon. In the case of no film, the stress and deformation of the dam is basically the same as that of the film, except that the stress and deformation increase. It can be seen that under the three conditions, the tensile stress of dam body and composite geomembrane appears successively from the initial state of compression, and the range of tensile zone is enlarged and the tensile stress increases under earthquake action. The composite geomembrane shows obvious stress concentration phenomenon in the connection, and the deformation changes from the initial integral settlement deformation to the local level and then to the whole horizontal and uplift state. Besides its own deformation, the deformation of the film is mainly attached to the deformation of the dam body. Compared with the case without film, the composite geomembrane not only plays an anti-seepage role, but also improves the stress and deformation of the dam body greatly, and greatly inhibits the stress and deformation of the dam body.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TV641.41;TV31

【參考文獻(xiàn)】

相關(guān)期刊論文 前9條

1 陳俊喜;趙鵬飛;郝明;;德日蘇寶冷水庫土工膜心墻堆石壩設(shè)計(jì)[J];東北水利水電;2012年05期

2 柳青祥,羅碧玉;復(fù)合土工膜在大壩工程應(yīng)用中的力學(xué)計(jì)算探究[J];水利與建筑工程學(xué)報(bào);2003年03期

3 魏取福,賀福敏,褚慧芬;針刺土工布?jí)嚎s性能及孔隙率的分析[J];非織造布;1995年03期

4 束一鳴;;防滲土工膜工程特性的探討[J];河海大學(xué)學(xué)報(bào);1993年04期

5 束一鳴;李永紅;;較高土石壩膜防滲結(jié)構(gòu)設(shè)計(jì)方法探討[J];河海大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年01期

6 岑威鈞,沈長(zhǎng)松,李星,楊子濤;堤壩中防滲(復(fù)合)土工膜的布置型式及計(jì)算理論研究[J];紅水河;2004年03期

7 岑威鈞;沈長(zhǎng)松;童建文;;復(fù)合土工膜防滲堆石壩力學(xué)特性有限元分析[J];水電能源科學(xué);2008年05期

8 任大春,張偉,吳昌瑜,包承綱;復(fù)合土工膜的試驗(yàn)技術(shù)和作用機(jī)理[J];巖土工程學(xué)報(bào);1998年01期

9 尚層;李玉建;徐千軍;侍克斌;;復(fù)合土工膜不同錨固型式對(duì)膜應(yīng)力變形的影響研究[J];中國(guó)農(nóng)村水利水電;2012年10期



本文編號(hào):2096210

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/shuiwenshuili/2096210.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c7501***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com