熱紅外溫敏技術(shù)在RFCCU襯里運行維護的應(yīng)用研究
發(fā)布時間:2018-07-09 14:12
本文選題:重油催化裂化 + 紅外熱成像。 參考:《東北石油大學(xué)》2017年碩士論文
【摘要】:隨著重油催化裂化裝置(RFCCU)加工原料的不斷加重,裝置運行的經(jīng)濟效益在煉油廠中逐漸占據(jù)主導(dǎo)地位,裝置長周期運行已成為各煉油廠爭相的追求目標,然而反應(yīng)再生系統(tǒng)器壁的過熱問題,內(nèi)部襯里不同程度的沖刷磨蝕問題,導(dǎo)致了反應(yīng)再生系統(tǒng)這一核心加工設(shè)備局部超溫,運行期間甚至超過設(shè)計溫度。裝置運行時設(shè)備內(nèi)部高溫催化劑對碳鋼金屬器壁磨損嚴重,易導(dǎo)致器壁磨蝕穿孔,嚴重時將直接導(dǎo)致裝置非計劃停工。熱紅外溫敏技術(shù)及其配套的熱紅外檢測設(shè)備已經(jīng)得到全面發(fā)展,紅外檢測熱圖的清晰度和準確率都得到大幅度提高,本文應(yīng)用先進的紅外熱成像儀器對反應(yīng)再生系統(tǒng)器壁超溫部位進行全面的安全檢測掃描,將紅外掃描熱圖進行對比分析。查找到主要易超溫部位:集中在90°或45°彎頭位置,容器接管的下料位置,接管的相貫焊縫位置以及局部器壁的中間位置。本文對催化劑磨蝕90°彎頭典型的襯里破壞形式進行仿真模擬,通過Solidworks建模、Gambit劃分網(wǎng)格、ANSYS軟件中的Fluent進行氣固兩相流的模擬、計算,得出典型彎管模型最易沖刷磨蝕的部位,為典型過熱區(qū)域的沖刷磨蝕分析提供理論依據(jù),為實際操作提供生產(chǎn)監(jiān)測指導(dǎo)。本文從裝置歷次檢修襯里的破壞形式入手,詳細分析反應(yīng)再生系統(tǒng)不同部位的襯里結(jié)構(gòu)型式,分析出彎頭部位塊狀過熱區(qū)域與高速催化的沖刷磨損有關(guān),接管接縫部位的帶狀過熱區(qū)域主要是該部位襯里開裂破損所致,直管部位以及器壁中間位置的超溫只要是由于內(nèi)部襯里施工質(zhì)量以及襯里料施工過程中受潮或者烘干升溫不到位所致,小接管等狹小區(qū)域的過熱是高速氣流、渦流所致。經(jīng)過對過熱區(qū)域的檢測和分析,詳細制定容器器壁過熱的治理措施:裝置生產(chǎn)過程中進行在線貼板處理,解決容器外壁局部過熱磨損問題;裝置停工過程中有針對性的對襯里進行修復(fù)和更換,并嚴格制定襯里烘干曲線,全過程控制襯里的施工質(zhì)量,全面保障重油催化裂化裝置長周期平穩(wěn)安全運行。
[Abstract]:With the aggravation of heavy oil catalytic cracking unit (RFCCU) processing feedstock, the economic benefit of unit operation has gradually occupied a dominant position in the refinery, and the long period operation of the unit has become the pursuit target of each refinery. However, the overheating of the reactor wall and the erosion and abrasion of the inner lining lead to the partial overheating of the core processing equipment of the reactor regeneration system, and even exceed the design temperature during operation. During the operation of the equipment, the high temperature catalyst inside the equipment will wear the carbon steel metal wall seriously, which will easily lead to the abrasion and perforation of the equipment wall, and will lead directly to the unplanned shutdown of the equipment. The thermal infrared temperature sensing technology and its matching thermal infrared detection equipment have been developed in an all-round way, and the clarity and accuracy of the infrared thermal images have been greatly improved. In this paper, the advanced infrared thermal imager is used to detect and scan the overheated parts of the wall of the reaction regeneration system, and the infrared scanning thermal images are compared and analyzed. The main overheated parts are found, such as the position of 90 擄or 45 擄bend, the position of the container nozzle, the position of the intersecting weld and the middle position of the local wall. This paper simulates the typical lining failure form of 90 擄bend of catalyst, simulates the gas-solid two-phase flow through Solidworks modeling and fluent in Gambit meshing ANSYS software, and obtains the most easily erosive erosion part of typical curved pipe model. It provides a theoretical basis for the analysis of scour erosion in a typical overheated area and provides a production monitoring guide for practical operation. In this paper, starting with the failure form of the overhauling lining of the plant, the structure types of the lining in different parts of the reaction regeneration system are analyzed in detail, and it is found that the block overheating area of the elbow part is related to the erosion and wear of the high speed catalysis. The band overheating area in the joint of the nozzle is mainly caused by the cracking and breakage of the lining in that part. As long as the overtemperature of the straight pipe and the middle position of the tube wall is caused by the internal lining construction quality and the damp or dry heating in the lining construction process, the overheating in the narrow area such as the small nozzle is caused by the high speed airflow and the eddy current. Through the detection and analysis of the overheating area, the measures to control the overheating of the vessel wall are worked out in detail: during the process of production, the on-line sticking plate is carried out to solve the problem of local overheating wear and tear of the outer wall of the vessel; During the shutdown of the plant, the lining is repaired and replaced, and the drying curve of the liner is strictly drawn up. The construction quality of the liner is controlled in the whole process, and the long period stable and safe operation of the heavy oil catalytic cracking unit is fully guaranteed.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TE96
【相似文獻】
相關(guān)期刊論文 前4條
1 丁泉,董國森;新型余熱鍋爐在RFCCU上的應(yīng)用[J];黑龍江石油化工;2000年04期
2 曹小建,蔡明件;聯(lián)合RFCCU脫硫系統(tǒng)改造[J];石油化工設(shè)計;2003年02期
3 劉香蘭,王穎,呂志國;RFCCU反再系統(tǒng)防結(jié)焦措施的應(yīng)用及技術(shù)分析[J];遼寧化工;2003年10期
4 韓榮賢,王梅正;分子篩抗焦活化劑在RFCCU上的工業(yè)應(yīng)用[J];石化技術(shù)與應(yīng)用;2005年05期
相關(guān)會議論文 前1條
1 王淵;;COR-C降烯烴催化劑在RFCCU催化裂化裝置的應(yīng)用[A];第2屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2005年
,本文編號:2109622
本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/2109622.html
最近更新
教材專著