氣體鉆井鉆桿完井基礎(chǔ)理論研究
本文選題:氣體鉆井 + 壓縮因子。 參考:《西南石油大學(xué)》2015年碩士論文
【摘要】:氣體鉆井技術(shù)是實現(xiàn)深層致密砂巖氣藏高效勘探開發(fā)的有效技術(shù)手段。但是,在深層致密砂巖氣藏鉆井過程中面臨深井、高壓、高產(chǎn)等地質(zhì)及工程問題,使用氣體鉆井技術(shù)鉆開儲層存在較高的安全風險。因此,工程上提出了氣體鉆井鉆桿完井技術(shù)。本文通過文獻調(diào)研、理論分析以及數(shù)值計算,對氣體鉆井鉆桿完井相關(guān)的基礎(chǔ)理論問題開展了研究,主要包括:高壓天然氣壓縮因子模型優(yōu)選和評價;不同工況下氣體鉆井井筒溫度分布模型建立與分析;氣體鉆井鉆桿完井不同工況井筒內(nèi)氣體流動規(guī)律研究。其主要研究方法和取得的研究成果如下:(1)通過對DAK模型、LXF模型、Hall模型編程計算,并與Standing-Katz天然氣壓縮因子圖版結(jié)果進行對比和適應(yīng)性評價,形成了一套氣體鉆井鉆桿完井從低壓~中壓~高壓流動的全域壓縮因子數(shù)學(xué)模型。(2)根據(jù)熱力學(xué)第一定律、熱力學(xué)理論以及傳熱學(xué)理論,以鉆柱內(nèi)流體、管柱壁、環(huán)空內(nèi)流體作為研究對象,建立了循環(huán)和非循環(huán)工況下鉆柱內(nèi)流體、管柱壁、環(huán)空內(nèi)流體的氣體鉆井井筒溫度分布數(shù)學(xué)模型,并進行數(shù)值計算。數(shù)值計算結(jié)果表明,氣體鉆井循環(huán)期間,隨著井深的增加鉆柱和環(huán)空內(nèi)的溫度都逐漸升高;非循環(huán)期間,隨著非循環(huán)時間的增加,環(huán)空溫度逐漸升高,而隨著時間的增長,非循環(huán)溫度變化越來越緩慢。(3)在全域天然氣壓縮因子計算模型、循環(huán)和非循環(huán)井筒溫度分布模型研究的基礎(chǔ)上,根據(jù)建立的氣體鉆井井內(nèi)控制方程,對氣體鉆井鉆桿完井不同工況井筒流動規(guī)律進行了研究。數(shù)值計算結(jié)果表明,當產(chǎn)氣量小時可以采用常規(guī)完井方式進行不壓井起下鉆完井,而當產(chǎn)氣量大時則需要用鉆桿完井;氣體鉆井鉆桿完井測試過程中井筒內(nèi)的壓力隨井深的增加而逐漸增大,且當油嘴尺寸變化時,井筒環(huán)空的壓力隨之改變,油嘴尺寸越小井筒環(huán)空壓力越大;關(guān)井時隨著關(guān)井時間的增加,井底壓力逐漸增大,直至與地層壓力平衡;投產(chǎn)時油嘴尺寸越小鉆桿和井底的壓力越大。通過本論文研究,為深層致密砂巖氣藏氣體鉆井鉆桿完井技術(shù)的實施和優(yōu)化提供了理論支撐。
[Abstract]:Gas drilling technology is an effective technique to realize high efficiency exploration and development of deep tight sandstone gas reservoir. However, in the drilling process of deep tight sandstone gas reservoir, there are many geological and engineering problems, such as deep well, high pressure, high yield and so on. There is a high safety risk in drilling reservoir with gas drilling technology. Therefore, the gas drilling pipe completion technology is put forward in engineering. Based on literature research, theoretical analysis and numerical calculation, the basic theoretical problems related to gas drilling pipe completion are studied in this paper, including: selection and evaluation of high pressure natural gas compression factor model; The model of wellbore temperature distribution in gas drilling under different working conditions is established and analyzed, and the gas flow law in the wellbore of gas drilling pipe completion under different conditions is studied. The main research methods and results obtained are as follows: 1) the DAK model / LXF model / Hall model is programmed and calculated, and the results are compared with the results of Standing-Katz natural gas compression factor chart and their adaptability is evaluated. A set of global compressibility factor mathematical models for gas drilling pipe completion from low pressure to medium pressure to high pressure is formed. According to the first law of thermodynamics, the theory of thermodynamics and the theory of heat transfer, the fluid in the drill string and the wall of the pipe string are used. The mathematical model of wellbore temperature distribution of drilling string, string wall and annulus fluid under cyclic and off-cycle conditions is established and calculated numerically. The numerical results show that during the gas drilling cycle, the temperature of the drill string and annulus increases gradually with the increase of well depth, and the annulus temperature increases gradually with the increase of the non-circulating time during the off-cycle period, but with the increase of time, the temperature of the annulus increases with the increase of the depth of the well. On the basis of the calculation model of natural gas compressibility factor and the temperature distribution model of circulating and off-circulation wellbore, the governing equation of gas drilling wells is established. In this paper, the wellbore flow law of gas drilling pipe completion under different working conditions is studied. The numerical results show that the conventional completion method can be used when the gas production is small, but the drilling pipe is needed to complete the well when the gas production is large. The pressure in the wellbore increases gradually with the increase of the well depth during the gas drilling pipe completion test, and when the nozzle size changes, the pressure of the wellbore annulus changes, and the smaller the nozzle size, the greater the wellbore annulus pressure. With the increase of shutoff time, the bottom hole pressure gradually increases until it is balanced with formation pressure, and the smaller the size of the oil nozzle and the greater the bottom hole pressure when put into production. This paper provides theoretical support for the implementation and optimization of gas drilling pipe completion technology in deep tight sandstone gas reservoirs.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE257;TE242
【參考文獻】
相關(guān)期刊論文 前10條
1 汪爽;倪超;嚴夢姍;;氣體鉆井井口裝置沖蝕規(guī)律研究及優(yōu)化配置[J];鉆采工藝;2014年05期
2 魏納;孟英峰;李皋;李永杰;徐朝陽;李紅濤;;欠平衡鉆井正氣舉過程井筒瞬態(tài)流動數(shù)值模擬[J];石油學(xué)報;2014年01期
3 王忠生;吉永忠;馬光長;張琴;;對阿姆河右岸基爾桑構(gòu)造壓力敏感含硫儲層鉆井技術(shù)的建議[J];鉆采工藝;2012年06期
4 王文勇;龍俊西;劉博偉;李皋;孟英峰;;超高溫地熱井泡沫鉆井井筒壓力剖面計算方法[J];天然氣工業(yè);2012年07期
5 朱忠喜;柳貢慧;岳達明;蔣記偉;;氣體鉆井巖屑運移破碎研究[J];石油鉆采工藝;2012年01期
6 周玉良;孟英峰;李皋;姚敏;張華;;氣體鉆井條件下泥頁巖水侵規(guī)律實驗研究[J];天然氣地球科學(xué);2011年05期
7 林鐵軍;練章華;陳世春;李敏;陳峰;;氣體鉆井中氣體攜巖對鉆桿的沖蝕機理研究[J];石油鉆采工藝;2010年04期
8 夏宏南;韓先柱;朱忠喜;;充氣鉆井井筒流動穩(wěn)定性研究[J];石油天然氣學(xué)報;2009年06期
9 李皋;孟英峰;蔣俊;肖長久;王延民;劉厚彬;丁振龍;;氣體鉆井的適應(yīng)性評價技術(shù)[J];天然氣工業(yè);2009年03期
10 侯樹剛;劉新義;楊玉坤;;氣體鉆井技術(shù)在川東北地區(qū)的應(yīng)用[J];石油鉆探技術(shù);2008年03期
相關(guān)碩士學(xué)位論文 前2條
1 劉洋;尾管注水泥循環(huán)溫度預(yù)測模型研究[D];西南石油大學(xué);2009年
2 王博;深水鉆井環(huán)境下的井筒溫度壓力計算方法研究[D];中國石油大學(xué);2007年
,本文編號:2001601
本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/2001601.html