天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 石油論文 >

基于人工神經(jīng)網(wǎng)絡(luò)的鉆井事故預(yù)測診斷方法

發(fā)布時間:2018-05-26 19:32

  本文選題:預(yù)測方法 + 井下復(fù)雜情況 ; 參考:《中國石油大學(xué)(華東)》2015年碩士論文


【摘要】:井下復(fù)雜情況直接關(guān)系到鉆井的成敗,消除鉆井過程中的井下復(fù)雜問題是安全鉆完井的最重要任務(wù)之一。提前預(yù)測鉆井井下復(fù)雜情況、采取適當(dāng)措施能確保鉆井施工安全,同時可以節(jié)約鉆進時間和成本。人工神經(jīng)網(wǎng)絡(luò)方法具有解決需要復(fù)雜模式識別鉆井井下復(fù)雜問題預(yù)測的巨大潛力,本文基于人工神經(jīng)網(wǎng)絡(luò)方法理論,開展鉆井井下復(fù)雜情況預(yù)測方法研究。本文首先歸納總結(jié)了鉆井過程中的各類井下復(fù)雜情況,重點分析了各類鉆井井下復(fù)雜情況的影響因素,從而準(zhǔn)確地為人工神經(jīng)網(wǎng)絡(luò)預(yù)測方法選擇合適的參數(shù)。引用人工神經(jīng)網(wǎng)絡(luò)方法,對比選用一種新型高效數(shù)學(xué)算法,基于C++程序設(shè)計語言,開發(fā)鉆井井下復(fù)雜情況預(yù)測診斷應(yīng)用程序,形成了鉆井井下復(fù)雜情況人工神經(jīng)網(wǎng)絡(luò)預(yù)測診斷方法。結(jié)合油田井下復(fù)雜情況實例數(shù)據(jù),驗證人工神經(jīng)網(wǎng)絡(luò)算法和鉆井井下復(fù)雜情況預(yù)測診斷方法的可靠性。預(yù)測結(jié)果和實際結(jié)果對比分析表明,該人工神經(jīng)網(wǎng)絡(luò)算法和鉆井井下復(fù)雜情況預(yù)測診斷方法具有較高的精度和準(zhǔn)確性,建立的鉆井井下復(fù)雜情況預(yù)測診斷方法可行、結(jié)果可靠,能應(yīng)用于鉆井實際來預(yù)測和確認(rèn)鉆井中可能出現(xiàn)的井下復(fù)雜問題。這種基于人工神經(jīng)網(wǎng)絡(luò)的鉆井井下復(fù)雜情況及其應(yīng)用計算程序預(yù)測診斷精確度高,具有很大應(yīng)用潛力,對鉆井井下復(fù)雜問題診斷和預(yù)測具有重要的意義。
[Abstract]:The downhole complex situation is directly related to the success or failure of drilling. It is one of the most important tasks for safe drilling and completion to eliminate the downhole complex problem during drilling. The complex condition of drilling well can be predicted ahead of time, and appropriate measures can be taken to ensure the safety of drilling operation, and at the same time, the drilling time and cost can be saved. The artificial neural network (Ann) method has great potential to solve the complex problems in drilling wells which need complex pattern recognition. Based on the theory of artificial neural network (Ann), the prediction method of drilling downhole complex situation is studied in this paper. In this paper, we first summarize the various downhole complex conditions in drilling process, and analyze the influencing factors of various drilling downhole complex conditions, so as to accurately select the appropriate parameters for the artificial neural network prediction method. By using artificial neural network method, a new and efficient mathematical algorithm is used to develop a prediction and diagnosis program for complex conditions in drilling wells based on C programming language. The artificial neural network prediction and diagnosis method for complex conditions in drilling well is formed. The reliability of artificial neural network algorithm and drilling downhole complex condition prediction and diagnosis method is verified by combining with the data of oilfield downhole complex case. The comparison and analysis between the prediction results and the actual results show that the artificial neural network algorithm and the drilling downhole complex situation prediction and diagnosis method have high accuracy and accuracy, the established prediction and diagnosis method for the drilling downhole complex situation is feasible and the results are reliable. It can be used in drilling practice to predict and confirm complex downhole problems that may occur in drilling. This kind of artificial neural network based drilling downhole complex situation and its application calculation program has high accuracy of prediction and diagnosis, and has great application potential, which is of great significance to the diagnosis and prediction of drilling downhole complex problems.
【學(xué)位授予單位】:中國石油大學(xué)(華東)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TP183;TE28

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳京洪,楊秀環(huán),唐寶英,張展霞,李錦蓉;人工神經(jīng)網(wǎng)絡(luò)預(yù)報浮游植物生長趨勢的研究[J];中山大學(xué)學(xué)報(自然科學(xué)版);2000年06期

2 侯晉,陳國松,王鎮(zhèn)浦;人工神經(jīng)網(wǎng)絡(luò)的發(fā)展及在多元校正中的應(yīng)用[J];分析科學(xué)學(xué)報;2001年01期

3 趙欣;人工神經(jīng)網(wǎng)絡(luò)應(yīng)用于大氣規(guī)劃的可能性[J];邯鄲職業(yè)技術(shù)學(xué)院學(xué)報;2002年04期

4 賴靜;王清;孫東立;;人工神經(jīng)網(wǎng)絡(luò)在材料研究中的應(yīng)用[J];材料工程;2006年S1期

5 石幸利;;人工神經(jīng)網(wǎng)絡(luò)的發(fā)展及其應(yīng)用[J];重慶科技學(xué)院學(xué)報;2006年02期

6 石樂明;周家駒;劉信安;孫敦明;許志宏;;人工神經(jīng)網(wǎng)絡(luò)用于化學(xué)雜交劑的構(gòu)效關(guān)系研究[J];化學(xué)通報;1992年06期

7 龔小一,,鄧勃,羅國安;前向人工神經(jīng)網(wǎng)絡(luò)的生成系統(tǒng)[J];計算機與應(yīng)用化學(xué);1996年04期

8 公源;;基于人工神經(jīng)網(wǎng)絡(luò)的汽車噴涂配比優(yōu)化研究與應(yīng)用[J];鍛壓裝備與制造技術(shù);2014年01期

9 王艷斌,袁洪福,陸婉珍,齊洪祥,殷宗玲;人工神經(jīng)網(wǎng)絡(luò)用于近紅外光譜測定柴油閃點[J];分析化學(xué);2000年09期

10 胡海峰,馬杰,馬玉書,王仁安;減壓渣油評價中的人工神經(jīng)網(wǎng)絡(luò)分析方法[J];計算機與應(yīng)用化學(xué);2000年03期

相關(guān)會議論文 前10條

1 吳兵;;一種具有語義分布的自構(gòu)造的新人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)及其應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年

2 劉R

本文編號:1938643


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1938643.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cfbc1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com