考慮輻射阻尼的Spar平臺(tái)渦激運(yùn)動(dòng)分析方法研究
本文選題:Spar平臺(tái) + 渦激運(yùn)動(dòng); 參考:《中國(guó)海洋大學(xué)》2015年博士論文
【摘要】:隨著海洋石油開(kāi)發(fā)逐漸從近海向深水發(fā)展,一些用于深水開(kāi)發(fā)的海洋采油平臺(tái)成為研究的熱點(diǎn),Spar平臺(tái)是20世紀(jì)末才被實(shí)際應(yīng)用到海洋石油開(kāi)發(fā)中的,是較為年輕的一種平臺(tái),具有良好的穩(wěn)定性,便利性,經(jīng)濟(jì)性,因此具有廣闊的應(yīng)用前景。而Spar平臺(tái)在一定來(lái)流作用下會(huì)發(fā)生由于尾流渦旋脫落引起的渦激運(yùn)動(dòng),對(duì)立管以及錨泊系統(tǒng)的疲勞壽命有著嚴(yán)重影響,因此,對(duì)Spar平臺(tái)的渦激運(yùn)動(dòng)特性進(jìn)行研究有著重要意義。目前對(duì)Spar平臺(tái)的渦激運(yùn)動(dòng)研究以縮尺模型實(shí)驗(yàn)居多,但縮尺模型實(shí)驗(yàn)中往往選擇弗汝德相似準(zhǔn)則進(jìn)行縮尺,從而根據(jù)縮尺模型的實(shí)驗(yàn)結(jié)果外推原型Spar平臺(tái)的渦激運(yùn)動(dòng)特性,這是有所欠缺的,因?yàn)橐鹌脚_(tái)渦激運(yùn)動(dòng)的尾流渦旋泄放與雷諾數(shù)、約化速度Ur密切相關(guān)。在模型實(shí)驗(yàn)中如果不能保證比例模型和原型在雷諾數(shù)上一致,那么比例模型和原型的振動(dòng)特性在相似關(guān)系上會(huì)出現(xiàn)一定程度的不符。尤其對(duì)于Spar平臺(tái)的縮尺模型實(shí)驗(yàn),如果采用弗汝德相似準(zhǔn)則進(jìn)行縮尺實(shí)驗(yàn),由于采用的縮尺比很小,雷諾數(shù)在模型和原型之間將發(fā)生數(shù)量級(jí)上的跨越,這對(duì)于實(shí)驗(yàn)結(jié)果的可靠性有著較大影響。因此,本文在第三章著重對(duì)縮尺比例模型實(shí)驗(yàn)中所采用的相似準(zhǔn)則進(jìn)行了探討,主要對(duì)全相似模型、雷諾相似模型和弗汝德相似模型這三種縮尺模型進(jìn)行了比較研究,通過(guò)數(shù)值模擬方法和實(shí)驗(yàn)方法最終認(rèn)為,在渦激振動(dòng)(渦激運(yùn)動(dòng))的縮尺實(shí)驗(yàn)研究中,應(yīng)首先考慮雷諾相似準(zhǔn)則進(jìn)行縮尺,而通過(guò)弗汝德相似準(zhǔn)則進(jìn)行縮尺的模型其振動(dòng)特性不能與原型滿足相應(yīng)的比例關(guān)系;赟par平臺(tái)渦激運(yùn)動(dòng)實(shí)驗(yàn)研究存在的缺陷,本文在第四章通過(guò)MATLAB軟件編程對(duì)Spar平臺(tái)的渦激運(yùn)動(dòng)進(jìn)行研究分析。在大多數(shù)CFD軟件中對(duì)渦激振動(dòng)(渦激運(yùn)動(dòng))的計(jì)算并不考慮結(jié)構(gòu)自身速度和加速度對(duì)流體反作用力,本文在編程中對(duì)該影響進(jìn)行了考慮,而且目前對(duì)于阻尼的計(jì)算,往往將結(jié)構(gòu)阻尼和流體阻尼合并為一個(gè)阻尼參量,本文將結(jié)構(gòu)阻尼和流體阻尼分開(kāi)進(jìn)行計(jì)算,建立了考慮輻射阻尼時(shí)Spar平臺(tái)渦激運(yùn)動(dòng)的動(dòng)力模型,比較分析了輻射阻尼對(duì)渦激運(yùn)動(dòng)的影響,同時(shí)對(duì)Spar平臺(tái)橫蕩,縱蕩,橫搖和縱搖四個(gè)自由度的運(yùn)動(dòng)進(jìn)行耦合求解。為了驗(yàn)證該數(shù)值模型的正確性,本文在第五章通過(guò)模型實(shí)驗(yàn)進(jìn)行比較分析,此時(shí)數(shù)值模型采用實(shí)際模型實(shí)驗(yàn)中的各類參數(shù)進(jìn)行計(jì)算,將計(jì)算結(jié)果同實(shí)驗(yàn)結(jié)果進(jìn)行比較,結(jié)果表明,此數(shù)值模型能較好的符合實(shí)際實(shí)驗(yàn)情況。本文在第六章對(duì)Spar平臺(tái)的渦激運(yùn)動(dòng)進(jìn)行了數(shù)值模擬研究,基于ANSYS-CFX對(duì)Spar平臺(tái)實(shí)際尺寸及來(lái)流條件下的渦激運(yùn)動(dòng)進(jìn)行了比較分析。通過(guò)不同流速下的數(shù)值模擬研究發(fā)現(xiàn),盡管Spar平臺(tái)在水深方向截面尺寸發(fā)生變化,但渦旋脫落卻有著較強(qiáng)的一致性,并不因截面變化而變化,三維效應(yīng)明顯。另外在第六章本文還運(yùn)用之前所編譯的渦激運(yùn)動(dòng)程序進(jìn)行了數(shù)值計(jì)算,并將結(jié)果同數(shù)值模擬的結(jié)果進(jìn)行比較,研究發(fā)現(xiàn),由于編程考慮了輻射阻尼,編程計(jì)算所得的縱蕩幅值響應(yīng)較數(shù)值模擬結(jié)果小得多,而縱蕩均值同數(shù)值模擬結(jié)果能很好吻合,編程計(jì)算所得的橫蕩響應(yīng)在數(shù)值模擬的非鎖定區(qū)流速下同數(shù)值模擬結(jié)果能較好的吻合。由于橫蕩運(yùn)動(dòng)足Spar平臺(tái)渦激運(yùn)動(dòng)中最重要的主導(dǎo)運(yùn)動(dòng),可見(jiàn)本文所編譯的Spar平臺(tái)渦激運(yùn)動(dòng)的分析程序是有一定適用性的。在第七章本文通過(guò)CFD方法對(duì)螺旋側(cè)板的抑渦作用進(jìn)行了機(jī)理性研究,建立了帶側(cè)板和無(wú)側(cè)板的流場(chǎng)數(shù)值模型。通過(guò)對(duì)兩種模型的渦旋泄放和升阻力系數(shù)的比較分析發(fā)現(xiàn),螺旋側(cè)板的存在能明顯降低升力系數(shù)幅值,但會(huì)增加拖曳力系數(shù)均值,螺旋側(cè)板的存在還會(huì)對(duì)尾流渦泄周期產(chǎn)生影響。通過(guò)對(duì)帶側(cè)板模型不同分段的升阻力系數(shù)比較發(fā)現(xiàn),流場(chǎng)模型自上而下有著一致的渦旋脫落周期,而且各分段上的升力系數(shù)幅值均大幅減小,并不是疊加后才產(chǎn)生總體升力系數(shù)幅值的減小,這和之前很多學(xué)者關(guān)于螺旋側(cè)板能降低結(jié)構(gòu)整體的升力系數(shù)的研究結(jié)果并不沖突。本文通過(guò)數(shù)值編程計(jì)算、模型實(shí)驗(yàn)和數(shù)值模擬這三種方法對(duì)Spar平臺(tái)的渦激運(yùn)動(dòng)進(jìn)行了研究分析,得出了一些較為可靠的結(jié)論,對(duì)于實(shí)際工程應(yīng)用非常有益。但是由于Spar平臺(tái)的渦激運(yùn)動(dòng)研究在國(guó)內(nèi)外都是比較新的課題,本文還是存在很多方面需要深入研究。
[Abstract]:With the development of offshore oil development from offshore to deep water, some offshore oil extraction platforms used for deep water development have become a hot spot of research. The Spar platform was actually applied to offshore oil development at the end of the twentieth Century. It is a relatively young platform with good stability, convenience and economy, so it has a wide application. The vortex induced vortex shedding motion caused by the wake vortex shedding will occur in the Spar platform, and the fatigue life of the opposing tube and the anchorage system is seriously affected. Therefore, it is of great significance to study the characteristics of the vortex induced motion of the Spar platform. At present, the study of the vortex induced motion of the Spar platform is mostly based on the scale model experiment. However, in the scale model experiment, the Froude similarity criterion is often used to scale the scale, so that the vortex induced motion characteristics of the prototype Spar platform are extrapolated according to the experimental results of the scale model, because the vortex discharge of the wake vortex induced by the platform vortex is closely related to the Reynolds number and the reduction rate of Ur. The proportion model and the prototype are consistent with the Reynolds number, then the vibration characteristics of the proportional model and the prototype will appear to a certain degree of discrepancy. Especially for the scale model experiment of the Spar platform, the Reynolds number is between the model and the prototype, if the scale ratio is very small, if the Froude similarity criterion is used. This will have a great impact on the reliability of the experimental results. Therefore, in the third chapter, the similarity criterion used in the scale scale model experiment is discussed, and the three scale models, such as the fully similar model, the Reynolds similarity model and the Froude similar model, are compared. The numerical simulation method and the experimental method finally think that in the scale experiment of vortex excited vibration (vortex induced motion), the Reynolds similarity criterion should be taken into account first, and the vibration characteristic of the scale model can not satisfy the proportional relationship with the prototype by the Froude similarity criterion. The experimental study on the vortex excitation based on the Spar platform In the fourth chapter, in the fourth chapter, the vortex excited motion of the Spar platform is studied and analyzed. In most CFD software, the calculation of vortex excited vibration (vortex excited motion) does not take into account the reaction force of the structure itself velocity and acceleration. In this paper, the effect is considered in the program, and the current resistance is considered. The structural damping and fluid damping are often combined into a damping parameter. In this paper, the structural damping and fluid damping are calculated separately. The dynamic model of the vortex induced motion of the Spar platform is established in consideration of the radiation damping. The effect of the radiation damping on the vortex excitation is compared and analyzed, and the Spar platform is swaying, sway, rolling and longitudinal. In order to verify the correctness of the four degree of freedom motion, in order to verify the correctness of the numerical model, the fifth chapter is compared and analyzed in the model experiment. At this time, the numerical model is calculated by various parameters in the actual model experiment, and the results are compared with the experimental results. The results show that the numerical model can be better. In the sixth chapter, the numerical simulation of vortex induced motion of Spar platform is studied in this paper. Based on ANSYS-CFX, the actual size of the Spar platform and the vortex excited motion under the flow condition are compared. The numerical simulation study under different flow velocities shows that the Spar platform changes in the depth of the water depth. But the vortex shedding has a strong consistency, it does not change with the cross section, and the three-dimensional effect is obvious. In addition, the numerical calculation is carried out in the sixth chapter, which is compiled before the use of the vortex excited motion program. The results are compared with the numerical simulation results. It is found that the programming calculation results from the programming calculation because of the programming consideration. The amplitude response of the longitudinal amplitudes is much smaller than that of the numerical simulation results, and the mean of the sway is in good agreement with the numerical simulation results. The yaw response obtained by the programming calculation is in good agreement with the numerical simulation results under the numerical simulation of the flow velocity in the unlocked region. The most important leading motion in the vortex motion of the Spar platform of the sway motion can be seen in this paper. The analysis program of the eddy excited motion of the compiled Spar platform has some applicability. In the seventh chapter, the vortex action of the spiral side plate is studied by the CFD method, and the numerical model of the flow field with the side plate and the non side plate is established. The spiral side is found by comparing the vortex discharge and the rise resistance coefficient of the two models. The existence of the plate can obviously reduce the lift coefficient amplitude, but it will increase the mean of the drag coefficient, and the existence of the spiral side will have an effect on the wake vorticity cycle. The flow model has a uniform vortex shedding period from top to bottom and the lift coefficient on each section. The amplitude of the total lift coefficient is reduced greatly, and the amplitude of the overall lift coefficient is reduced. This is not in conflict with the previous research results on the lifting coefficient of the spiral side plate which can reduce the overall lift force. In this paper, the three methods of numerical programming, model experiments and numerical simulations have been carried out on the vortex induced motion of the Spar platform. Some more reliable conclusions are obtained, which are very useful for practical engineering applications. However, the study of vortex induced motion of Spar platform is a new topic both at home and abroad. There are still many aspects in this paper that need to be studied in depth.
【學(xué)位授予單位】:中國(guó)海洋大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE95
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 馬巍巍;余建星;于皓;;桁架式Spar平臺(tái)氣隙響應(yīng)研究[J];中國(guó)海上油氣;2006年05期
相關(guān)會(huì)議論文 前6條
1 劉利琴;唐友剛;張若瑜;;考慮非線性系泊力時(shí)Spar平臺(tái)垂蕩-縱搖耦合運(yùn)動(dòng)[A];第十四屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2009年
2 王世圣;李新仲;謝彬;;深水桁架式Spar平臺(tái)總體設(shè)計(jì)方法與總體性能研究[A];第十五屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上)[C];2011年
3 王闊;竇星慧;劉廣輝;金鵬;陳維杰;;Spar平臺(tái)建造的滑道承載力分析[A];第十三屆中國(guó)科協(xié)年會(huì)第13分會(huì)場(chǎng)-海洋工程裝備發(fā)展論壇論文集[C];2011年
4 倪歆韻;張艷芳;田于逵;劉培林;夏賢;劉建輝;;Spar平臺(tái)環(huán)境載荷風(fēng)洞測(cè)試及載荷分析[A];紀(jì)念顧懋祥院士海洋工程學(xué)術(shù)研討會(huì)論文集[C];2011年
5 劉波;梁瑜;;深水桁架式Spar平臺(tái)干式拖航強(qiáng)度分析[A];2012年度海洋工程學(xué)術(shù)會(huì)議論文集[C];2012年
6 楊爍;繆泉明;匡曉峰;;Spar平臺(tái)螺旋側(cè)板繞流場(chǎng)的CFD分析[A];第二十一屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第八屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨兩岸船舶與海洋工程水動(dòng)力學(xué)研討會(huì)文集[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 周陽(yáng);考慮輻射阻尼的Spar平臺(tái)渦激運(yùn)動(dòng)分析方法研究[D];中國(guó)海洋大學(xué);2015年
2 王穎;Spar平臺(tái)渦激運(yùn)動(dòng)關(guān)鍵特性研究[D];上海交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 王n\;基于響應(yīng)面方法的Spar平臺(tái)可靠性分析[D];大連理工大學(xué);2015年
2 趙敏;Spar平臺(tái)垂蕩板強(qiáng)迫運(yùn)動(dòng)水動(dòng)力特性試驗(yàn)研究[D];大連理工大學(xué);2012年
3 李磊;深海經(jīng)典Spar平臺(tái)內(nèi)共振機(jī)理分析[D];中國(guó)海洋大學(xué);2013年
4 徐學(xué)軍;深海Spar平臺(tái)垂蕩—縱搖耦合非線性運(yùn)動(dòng)響應(yīng)研究[D];中國(guó)海洋大學(xué);2011年
5 沈妍;考慮松弛—張緊效應(yīng)時(shí)深海Spar平臺(tái)系纜的沖擊張力研究[D];天津大學(xué);2009年
6 魏洪斌;Spar平臺(tái)上組塊就位過(guò)程多浮體結(jié)構(gòu)動(dòng)力分析[D];哈爾濱工程大學(xué);2012年
7 蘇云龍;海流作用下多立柱式Spar平臺(tái)繞流流場(chǎng)與渦激運(yùn)動(dòng)特性研究[D];上海交通大學(xué);2014年
8 于海龍;基于ANSYS軟件實(shí)現(xiàn)Spar平臺(tái)的波浪載荷動(dòng)力分析[D];哈爾濱工程大學(xué);2008年
,本文編號(hào):1884786
本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1884786.html