蠟油加氫裂化裝置流程模擬與優(yōu)化研究
本文選題:加氫裂化 + 流程模擬; 參考:《中國(guó)石油大學(xué)(華東)》2015年碩士論文
【摘要】:本文以某石化公司220萬(wàn)噸/年蠟油加氫裂化裝置為研究對(duì)象。首先介紹了該裝置的基本情況,然后以現(xiàn)場(chǎng)的標(biāo)定數(shù)據(jù)為基礎(chǔ),使用KBC公司的Petro-SIM流程模擬軟件中的HCR-SIM模塊對(duì)該加氫裂化裝置的全套流程進(jìn)行了模擬,建立了全裝置的流程模型,包括其反應(yīng)系統(tǒng)和分離系統(tǒng)。將模擬結(jié)果與現(xiàn)場(chǎng)標(biāo)定數(shù)據(jù)進(jìn)行對(duì)比,誤差在合理范圍內(nèi),表明本文所建立的模型可以較好的反映裝置的實(shí)際生產(chǎn)狀況,可以將其用于后續(xù)的分析優(yōu)化工作中。以建立的加氫裂化裝置模型為工具,分析了反應(yīng)溫度、反應(yīng)壓力、空速、分餾塔操作條件等因素對(duì)裝置產(chǎn)品分布、產(chǎn)品質(zhì)量等的影響,然后以最大限度生產(chǎn)石腦油、航煤、柴油等為目標(biāo)函數(shù),建立了穩(wěn)態(tài)優(yōu)化問(wèn)題,并進(jìn)行了求解,對(duì)實(shí)際裝置的操作具有指導(dǎo)意義。能量系統(tǒng)分析部分首先根據(jù)三環(huán)節(jié)能量分析方法,對(duì)該加氫裂化裝置能量轉(zhuǎn)換與傳輸、能量工藝?yán)眉澳芰炕厥杖齻(gè)環(huán)節(jié)分別進(jìn)行了計(jì)算,結(jié)果表明該裝置工藝總用能為3630.87 MJ/t原料,能量轉(zhuǎn)換和傳輸效率為85.08%,能量回收利用率54.73%,找到了裝置節(jié)能優(yōu)化的方向,并針對(duì)各環(huán)節(jié)提出了相應(yīng)的節(jié)能措施。然后用夾點(diǎn)技術(shù)對(duì)裝置現(xiàn)行的換熱網(wǎng)絡(luò)進(jìn)行了分析,找出了違背夾點(diǎn)原則的不合理?yè)Q熱,提出了換熱網(wǎng)絡(luò)的兩種優(yōu)化方案,用HTRI軟件對(duì)各方案中新增及改動(dòng)的換熱器進(jìn)行了設(shè)計(jì)和校核,比較了兩種優(yōu)化方案的可行性和經(jīng)濟(jì)性,結(jié)果表明方案二要優(yōu)于方案一,可節(jié)省6.39%的冷公用工程及20.13%的熱公用工程,投資回收期為0.39年。最后,針對(duì)本裝置低溫?zé)嵩蠢速M(fèi)較多的現(xiàn)狀,提出了用低溫余熱發(fā)電的回收方案,經(jīng)計(jì)算得發(fā)電量為3.5MW,具有較好的經(jīng)濟(jì)效益。
[Abstract]:The hydrocracking unit of 2.2 million t / a wax oil in a petrochemical company was studied in this paper. The basic conditions of the unit are introduced at first, and then based on the field calibration data, the full set of processes of the hydrocracking unit are simulated by using the HCR-SIM module in the Petro-SIM process simulation software of KBC Company, and the process model of the whole unit is established. Including reaction system and separation system. The simulation results are compared with the field calibration data, and the error is within a reasonable range, which shows that the model can reflect the actual production situation of the device and can be used in the subsequent analysis and optimization work. The effects of reaction temperature, reaction pressure, space velocity and operation conditions of fractionator on the product distribution and product quality of the hydrocracking unit were analyzed by using the established hydrocracking unit model. The naphtha and aviation coal were produced to the maximum extent. The steady-state optimization problem is established and solved by using diesel oil as the objective function, which is of guiding significance to the operation of practical equipment. In the part of energy system analysis, the energy conversion and transmission, energy process utilization and energy recovery of the hydrocracking unit are calculated according to the three-ring energy analysis method. The results show that the total energy consumption of the plant is 3630.87 MJ/t, the energy conversion and transmission efficiency is 85.08, and the energy recovery utilization ratio is 54.73. The direction of energy saving optimization is found, and the corresponding energy-saving measures are put forward for each link. Then, the current heat transfer network of the device is analyzed by pinch technique, and the unreasonable heat transfer that violates the pinch principle is found out, and two optimization schemes of the heat transfer network are put forward. The new and modified heat exchangers in each scheme are designed and checked by HTRI software. The feasibility and economy of the two optimization schemes are compared. The results show that the second scheme is better than the first. It can save 6.39% cold utility and 20.13% hot utility, and the investment payback period is 0.39 years. Finally, in view of the present situation that the low temperature heat source is wasted more in this device, the recovery scheme of generating electricity with low temperature waste heat is put forward. The calculation results show that the electricity generating capacity is 3.5 MWs, which has good economic benefit.
【學(xué)位授予單位】:中國(guó)石油大學(xué)(華東)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE96
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛科創(chuàng);;常用化工流程模擬軟件的比較[J];當(dāng)代化工;2014年05期
2 姚春峰;;金陵石化Ⅱ套加氫裂化裝置流程模擬應(yīng)用[J];中外能源;2014年02期
3 劉寬;王鐵剛;曹祖賓;王莉;;化工流程模擬軟件的介紹與對(duì)比[J];當(dāng)代化工;2013年11期
4 張繼昌;徐艷麗;王新平;凌榮佳;楊華龍;劉德鵬;;加氫裂化裝置換熱網(wǎng)絡(luò)節(jié)能優(yōu)化[J];煉油技術(shù)與工程;2013年07期
5 龐東輝;蘇成利;;加氫裂化裝置的流程模擬及用能分析[J];節(jié)能技術(shù);2013年04期
6 劉祥雪;李煒圖;孔帥;;夾點(diǎn)技術(shù)的基本原理[J];科技致富向?qū)?2013年21期
7 李宗雯;程明;;加氫裂化裝置分餾塔的模擬優(yōu)化[J];制造業(yè)自動(dòng)化;2013年10期
8 蹇江海;;加氫裂化裝置生產(chǎn)高閃點(diǎn)噴氣燃料改造方案研究[J];石油煉制與化工;2013年04期
9 代廣超;程明;;催化裂化吸收穩(wěn)定系統(tǒng)流程模擬與優(yōu)化[J];化學(xué)反應(yīng)工程與工藝;2012年06期
10 張金先;鄭文剛;王鋒;;延遲焦化裝置流程模擬及應(yīng)用[J];石油煉制與化工;2012年12期
相關(guān)碩士學(xué)位論文 前1條
1 馬曉明;連續(xù)重整裝置模擬與節(jié)能研究[D];青島科技大學(xué);2012年
,本文編號(hào):1846005
本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1846005.html