含油泡沫改善井筒稠油流動性實驗研究
發(fā)布時間:2018-04-04 00:36
本文選題:井筒稠油 切入點:含油泡沫 出處:《西南石油大學》2015年碩士論文
【摘要】:降低稠油粘度并改善稠油流動性的方法很多,其中通過形成含油泡沫從而改善稠油流動性是一種新穎的方法。在稀油緊缺,摻稀降黏經(jīng)濟性降低的時候,它為改善稠油井筒流動性提供了一種經(jīng)濟有效的補充。由于含油泡沫是氣液兩相流體,并且井筒中環(huán)境復雜多變,影響井筒中含油泡沫流變特征的因素很多。論文針對塔河油田7區(qū)稠油特點及現(xiàn)場實際情況,開展了以下幾方面研究。 1.針對目標區(qū)塊高礦化度地層水,優(yōu)選了S156復配起泡體系。泡沫評價實驗結(jié)果表明S156體系在23×104mg/L礦化度條件下具有良好適應性,在濃度0.2%時,FCI值最高達到3755.9mL.min。 2.研究了常溫常壓條件下影響含油泡沫性能的因素,對比總結(jié)出最有利于含油泡沫生成和穩(wěn)定的條件。研究結(jié)果表明:在稠油黏度18620mPa·s,油水比1:2,S156濃度0.7%,較長的攪拌時間,適當?shù)臄嚢杷俾屎洼^低溫度條件下,更有利于獲得穩(wěn)定含油泡沫。在常溫常壓實驗基礎上,模擬井筒溫度和壓力條件,將氣體融入液相配制活油。通過觀察壓力降低后的起泡情況,得出了有利于含油泡沫生成穩(wěn)定的條件。在井筒壓力足夠高的情況下,加藥點處的壓力以高于20MPa為宜,氮氣比空氣和二氧化碳更適用,壓降速度越大越有利于泡沫油形成。 3.通過物模實驗模擬井筒中稠油流動狀態(tài),研究了含油泡沫在不同井筒深度的表觀黏度分布,以及各深度下含油泡沫相對于井筒原始流體的降黏效率,并對管線出口端流體形態(tài)加以比對。實驗結(jié)果顯示,隨井筒深度變淺,含油泡沫的表觀黏度因溫度降低逐漸增大,在1064m、1596m和2128m處的降黏效率分別為57.98%、79.48%和87.10%。出口流體對比結(jié)果表明,加入起泡劑和氮氣后形成的含油泡沫和原始流體形態(tài)差異明顯,油相、氣相和水相能夠在管線中充分混合形成含油泡沫,實現(xiàn)提高稠油流動性的目的。 論文研究成果對塔河油田7區(qū)稠油開采有積極意義,并為類似稠油油田開展含油泡沫改善井筒稠油流動性的研究提供了有益參考與借鑒。
[Abstract]:There are many ways to reduce viscous oil viscosity and improve heavy oil fluidity.When the dilute oil is in short supply and the economy of reducing viscosity is reduced, it provides an economic and effective supplement for improving the wellbore fluidity of heavy oil.Because the oil-bearing foam is a gas-liquid two-phase fluid, and the environment in the wellbore is complex and changeable, there are many factors affecting the rheological characteristics of oil-bearing foam in the wellbore.According to the characteristics of heavy oil and the actual situation in Tahe Oilfield area 7, the following aspects have been studied in this paper.1.For high salinity formation water of target block, S 156 foaming system is selected.The results of foam evaluation show that S156 system has good adaptability under the condition of 23 脳 104mg/L mineralization, and the highest value of FCI is 3755.9 mL 路min when the concentration is 0.2.2.The factors affecting the properties of oil-bearing foam under normal temperature and atmospheric pressure were studied and the conditions most favorable to the formation and stability of oil-bearing foam were compared and summarized.The results show that when the viscosity of heavy oil is 18620mPa s, the ratio of oil to water is 1: 2, the concentration of S156 is 0.7, the stirring time is longer, the appropriate stirring rate and the condition of lower temperature are more favorable to obtain stable oil-bearing foam.On the basis of the experiment at room temperature and atmospheric pressure, the conditions of wellbore temperature and pressure are simulated, and the gas is mixed into liquid phase to prepare live oil.By observing the foaming condition after the pressure is reduced, the conditions conducive to the formation and stability of the oil-bearing foam are obtained.When the wellbore pressure is high enough, the pressure at the dosing point is higher than that of 20MPa, nitrogen is more suitable than air and carbon dioxide, and the higher the pressure drop is, the more favorable the foam oil is.3.The distribution of apparent viscosity of oil-bearing foam at different wellbore depths and the viscosity reduction efficiency of oil-containing foam compared with the original fluid in wellbore were studied by simulating the flow state of heavy oil in wellbore by physical model experiment.The fluid morphology at the outlet of the pipeline is compared.The experimental results show that the apparent viscosity of the oil-bearing foam increases gradually due to the decrease of temperature with the wellbore depth becoming shallower, and the viscosity reduction efficiency at 1064 m / 1596m and 2128m is 57.98% and 87.10%, respectively.The results of export fluid comparison show that the oil-bearing foam formed by adding foaming agent and nitrogen is obviously different from the original fluid. The oil phase, gas phase and water phase can be mixed in the pipeline to form the oil-bearing foam, and the purpose of enhancing the flow of heavy oil is achieved.The research results of this paper have positive significance for heavy oil recovery in area 7 of Tahe Oilfield, and provide useful reference and reference for similar heavy oil fields to carry out research on improving wellbore heavy oil fluidity with oil foam.
【學位授予單位】:西南石油大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE345
【參考文獻】
相關期刊論文 前10條
1 張金川;唐玄;邊瑞康;云露;王敏;王艷芳;楊振恒;劉麗芳;;塔河地區(qū)奧陶系油田水分布與運動學特征研究[J];地質(zhì)學報;2007年08期
2 BrijB.Maini ,佘慶東,袁冠軍,張宏;泡沫油流[J];國外油田工程;2002年02期
3 崔永亮;;稠油降粘方法比較概述[J];科技創(chuàng)新與應用;2013年05期
4 唐金庫;;泡沫穩(wěn)定性影響因素及性能評價技術(shù)綜述[J];艦船防化;2008年04期
5 柳榮偉;陳俠玲;周寧;;稠油降粘技術(shù)及降粘機理研究進展[J];精細石油化工進展;2008年04期
6 尉小明,劉喜林,王衛(wèi)東,徐鳳廷;稠油降粘方法概述[J];精細石油化工;2002年05期
7 郭秀東;胡國亮;楊映達;李占坤;;塔河油田高礦化度污水的水質(zhì)改性中試研究[J];中國石油和化工標準與質(zhì)量;2013年05期
8 張廷山,蘭光志,鄧莉,鄧曉皋,張彩慶;微生物降解稠油及提高采收率實驗研究[J];石油學報;2001年01期
9 王伯軍;吳永彬;蔣有偉;梁金中;張霞林;李松林;;泡沫油PVT性質(zhì)實驗[J];石油學報;2012年01期
10 耿宏章,秦積舜,周開學;高溫高壓油氣水混合液粘度測量裝置[J];石油儀器;2003年01期
,本文編號:1707594
本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1707594.html
教材專著