天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 石油論文 >

油氣田水下生產系統(tǒng)基礎的沖刷研究

發(fā)布時間:2018-03-23 23:00

  本文選題:水下生產系統(tǒng) 切入點:CFD 出處:《中國海洋大學》2015年博士論文


【摘要】:隨著能源需求的與日俱增,人類對海洋油氣田開發(fā)的重視度也逐步提高,可達到的水深隨著技術的不斷成熟也越來越深。面對水深導致的開發(fā)成本的大幅提高,一種新的開采系統(tǒng)---油氣田水下生產系統(tǒng)得到了普遍關注。水下生產系統(tǒng)的適用范圍從幾十米至幾千米,且建造成本不隨水深的增加而增加。水下生產系統(tǒng)主要由水下井口和采油樹、管匯、跨接管、臍帶纜、海底管線、立管、控制系統(tǒng)及水下處理系統(tǒng)等組成,通過控制系統(tǒng)的遠程操控,將油氣井采出的油氣水從海底輸送到依托設備或陸上終端。水下生產系統(tǒng)的基礎多數采用防沉板,且通過裙板入泥進行固定。如果基礎處于漁業(yè)區(qū),為了防止防沉板上裸露放置的管匯對漁網產生拖掛,需在管匯上部放置保護罩。但保護罩的存在會改變周圍流場,從而產生沖刷,有可能引起防沉板的不均勻沉降甚至滑移,從而對生產系統(tǒng)的其余部分產生附加荷載,對其正常運作產生安全隱患。水下生產系統(tǒng)基礎保護罩的迎流面、背流面皆不垂直于床面,且前后都存在可透水的預留口,這種結構前人并未做過相關研究,而且針對工程結構實際尺寸所進行的沖刷研究也很少。為了分析帶有保護罩結構的水下生產系統(tǒng)基礎周圍的沖刷情況,本文采用了物理模型試驗和數值模擬相結合的方法。首先對正常工況下基礎的局部沖刷進行模型試驗,然后通過耦合求解水流運動、懸移質擴散、推移質輸運以及床面高程變化的沖刷模型對物理模型試驗進行數值分析,其中水流運動通過RNG k-ε湍流模型對雷諾時均方程進行封閉求解,并利用VOF追蹤自由液面。模擬結果充分證明了該數值模擬方法的可行性。鑒于實驗室比尺模型試驗的結果難以反推至水下生產系統(tǒng)基礎的原型,論文又對水下生產系統(tǒng)基礎的原型在正常、極端兩種工況下的沖刷進行了數值模擬。建立三維數值模型時,如果模擬真實水深,計算量會非常大,同時鑒于海底水質點速度引起的海床剪切應力是影響泥沙運動的主要因素,因此在保證近底水質點速度的前提下,將水深減小,以使數值模擬大范圍流場成為可能。一年一遇潮流、一年一遇波浪的正常工況下,波浪產生的海底水質點流速相對較小,可以忽略不計,因此正常工況可看作純水流作用下。小尺寸基礎的物理模型試驗、數模驗證皆表明,迎流面、背流面的沖刷皆起始于流速放大處。首先,背流面預留口附近產生沖刷,但由于模型高出沙面的高度較小,尾渦強度不大故而背流面的沖刷發(fā)展很慢;而迎流面的沖刷則開始于尖角處,在預留口兩側下潛流的輔助下,沖刷坑向中間迅速發(fā)展,致使尖角處沖刷深度最大,而迎流面中間預留口位置的沖刷深度較小。對于該工況下大尺寸原型的沖刷模擬則表明,由于保護罩高出海底高度的大幅增加,尾渦的發(fā)展使得背流面的沖刷范圍加大。背流面預留口位置首先出現的沖刷坑在尾渦的加速下迅速向周圍擴展,個別位置的沖刷坑深度已超過第一層底沙的厚度。而迎流面的沖刷雖然還是起始于尖角位置,但在向中間發(fā)展的過程中,由于預留口位置防沉板高度造成的下潛流使得中間位置的沖刷坑更深。百年一遇潮流、百年一遇波浪的極端工況下,波浪、潮流產生的水質點速度皆很大,再加上波浪作用下又導致邊界層變薄,致使整個沙面都出現了沖刷現象。初始在迎流面尖角處形成的沖刷坑在波浪的振蕩過程中被弱化,最終在前后兩預留口附近形成了明顯的沖刷坑,尤其是背流面出水口附近的沖刷坑深度已達到兩層底沙的厚度。此外,不同比尺的物理模型在同一水深下的沖刷試驗表明,基礎周圍的沖刷隨比尺的增大而嚴重,這表明水深與沒水基礎高度的相對比值對沖刷有重要影響。為了研究該比值的影響,本文對水下生產系統(tǒng)基礎模型在不同水深下的沖刷進行了數值模擬研究,結果表明,當水深與基礎高度的比值超過7.5時,基礎周圍的沖刷將不再受水深的影響而相對穩(wěn)定。水下生產系統(tǒng)基礎的沖刷研究需要綜合考慮水、沙、基礎之間的相互作用,與出水的基礎結構相比,沒水基礎流場的尾渦中增加了一項,該項由流經基礎上方的水流發(fā)展而來,其強度與基礎離開沙面的高度有關。就本文研究的基礎而言,除沒水外,基礎內部還可透水,這就需要考慮透水口的出水對基礎背流面的影響,以上因素皆導致背流面的沖刷甚為復雜。以物理模型試驗為依據,以數值模擬方法為手段,本文得到了水下生產系統(tǒng)的基礎在純流和浪流共同作用下的沖刷范圍及沖刷深度,從而對后期的設計及安裝提供指導。此外,對其他形狀大尺寸模型的沖刷數值模擬也提供了參考。
[Abstract]:With the energy needs of mankind to grow with each passing day, the offshore oil and gas development importance also gradually improve, can reach the depth with the maturity of the technology is more and more deep. In the face of water depth caused a substantial increase in the cost of development, a production system, the new system of oil and gas field water has been widespread concern. The scope of underwater production system from tens of meters to several thousand meters, and the construction cost increases with the increase of water depth. The water is mainly composed of an underwater wellhead and Christmas tree, manifold, cross over, umbilical cable, submarine pipeline, pipe production system, control system and water treatment system composed by remote control the control system, the oil and gas production of oil and gas conveying water from the seabed to rely on equipment or the onshore terminal. Most basic underwater production system using mudmat, and through the apron into the mud is fixed. If in the fishing area, for The prevention of the placement of mudmat bare pipe produced on the net in the trailer, the manifold is placed on the upper part of the protection cover. But the protection will change the flow field around the existing cover, resulting in erosion, may cause uneven settlement of mudmat even slip, resulting in additional load on the rest of the production system. The normal operation of security risks. Underwater production system based protective cover flow, back flow surface is not perpendicular to the bed surface, and the existence of both before and after the reserved port water permeable, this structure is not done previous related research, and according to the engineering structure of the actual size of the scour are few. In order to analysis of scour protection cover structure with underwater production system around the base, this paper uses the method of physical model test and numerical simulation. The combination of the first test model of local scour on the basis of the normal conditions Then, by solving the coupling flow, suspended sediment diffusion, bedload transport and erosion model change of bed elevation in numerical analysis of physical model experiment, the flow through the RNG k- turbulence model of Reynolds averaged equations are solved and closed, using VOF to track the free surface. The simulation results prove the feasibility the numerical simulation method. In view of the laboratory scale model test results difficult to backstepping underwater production system based on the prototype, and underwater production system based on the normal prototype, the extreme two conditions of erosion were simulated. The three-dimensional numerical model is established to simulate the real, if the water depth, the computation will be very large, at the same time as the sea water seabed shear velocity stress is the main factor affecting the sediment movement, so under the premise of ensuring the near bottom velocity of water particle under water Deep decreases, which makes the numerical simulation the flow field becomes possible. Once a year the trend, a normal operating year wave under the sea water velocity wave is relatively small, can be ignored, so the normal condition can be regarded as pure water. Under the action of the physical model test of small size based on the model validation showed that welcome back, flow, flow erosion are starting in velocity enlargement. First of all, the dorsal stream surface kept scouring near the mouth, but due to a smaller height model of high sand, vortex strength and back flow erosion has very slow development; while the upstream erosion was started in the corner, auxiliary undercurrent in the reserved hole on both sides of the rapid development, to the middle of the scour pit, resulting in the maximum scour depth at the corners, and the upstream face middle reserved port position of scour depth is smaller. For the large size of the prototype scour under the condition simulation shows that, by In the protection cover above the seabed height increased sharply. The development of vortex flow erosion makes the back range increase. The scour downstream reserved port position appears first accelerating in the wake of rapid expansion to the surrounding and the depth of scour hole in the position of the individual has more than the first layer of sediment thickness and flow. The scour though starting at corner position, but in the process of development to the middle, because the flow reservation mouth position mudmat height caused by making the middle position of the scour hole deeper. The hundred years trend, the extreme conditions of hundred years of waves, waves, water particle velocity flow generated are large, then and under the action of wave and the boundary layer becomes thinner, resulting in the sand have been weakened in the erosion phenomenon. The initial wave oscillation process in the upstream scour hole forming surface at the corners of the final two before and after the reservation near the mouth of the formation The scour pit is obvious, especially the depth of the pit back flow near the outlet has reached two of the thickness of bottom sediment. In addition, proved that the physical model test of different scales in the same depth of scour around foundations with scale increasing serious, which indicates that the water depth and the relative ratio of water based on the height of erosion has an important influence. In order to study the influence of the ratio, the water production system under the basic model in different depth of erosion is studied by numerical simulation. The results show that when the ratio of depth and height of foundation of more than 7.5, the foundation scour around will not be affected by the effect of water depth and relative stability water erosion research production system. Basic needs comprehensive consideration of water, sediment, the interaction between the foundation, compared with the basic structure of water, no water flow in the wake of an increase, the flow through the foundation above The current development, the strength and height of the sand foundation left. The basis of this study, in addition to no water, but also the basis of internal flooding, which need to be considered on the basis of the water permeable mouth back flow impact, the above factors lead to back flow surface erosion on the physical model is very complex. According to the test, by means of numerical simulation, this paper obtained the basic water production system under the flow erosion range of interaction and the scour depth in pure flow and waves, and for the later design and installation to provide guidance. In addition, the simulation also provides a reference for other large size shape erosion numerical model.

【學位授予單位】:中國海洋大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TE95

【相似文獻】

相關期刊論文 前10條

1 蘇鋒;劉鴻雁;王強;;電力/信號傳輸技術在水下生產系統(tǒng)的應用[J];石油化工自動化;2008年05期

2 俞曼麗;;高完整性壓力保護系統(tǒng)在水下生產系統(tǒng)中的應用[J];石油化工自動化;2010年05期

3 王建文;王春升;楊思明;;流花4-1油田水下生產系統(tǒng)總體布置設計[J];中國造船;2011年S1期

4 王瑩瑩;王德國;段夢蘭;田凱;杜慶貴;文綱;;水下生產系統(tǒng)典型布局形式的適應性研究[J];石油機械;2012年04期

5 徐曉麗;徐冰;;水下生產系統(tǒng)的發(fā)展現狀及未來預測[J];船舶物資與市場;2014年01期

6 高原;魏會東;姜瑛;王勇;;深水水下生產系統(tǒng)及工藝設備技術現狀與發(fā)展趨勢[J];中國海上油氣;2014年04期

7 王瑋;孫麗萍;白勇;;水下油氣生產系統(tǒng)[J];中國海洋平臺;2009年06期

8 金向東;林華春;;海上油氣田水下生產系統(tǒng)的關鍵設備與技術[J];油氣田地面工程;2012年04期

9 尹豐;;南海某氣田水下生產系統(tǒng)可靠性保障設計[J];石油礦場機械;2012年07期

10 顧永維;高飛;王宇臣;;水下生產系統(tǒng)防塵板基礎承載力及其可靠性分析[J];中國海洋平臺;2013年02期

相關會議論文 前10條

1 張姝妍;劉培林;曾樹兵;鞠朋朋;張虹;;水下生產系統(tǒng)研究現狀和發(fā)展趨勢[A];2009年度海洋工程學術會議論文集(上冊)[C];2009年

2 琚選擇;;水下生產系統(tǒng)的流動保障設計分析[A];第十五屆中國海洋(岸)工程學術討論會論文集(下)[C];2011年

3 王春升;;水下生產系統(tǒng)在南海流花4-1油田開發(fā)中的研究與應用[A];2010年度海洋工程學術會議論文集[C];2010年

4 張理;;水下生產系統(tǒng)單井計量方案研究[A];2009年度海洋工程學術會議論文集(上冊)[C];2009年

5 王建文;楊思明;王春升;石云;;淺談水下生產系統(tǒng)開發(fā)模式和工程設計[A];第十五屆中國海洋(岸)工程學術討論會論文集(上)[C];2011年

6 王建文;王春升;楊思明;;水下生產系統(tǒng)開發(fā)模式和工程方案設計[A];第十三屆中國科協年會第13分會場-海洋工程裝備發(fā)展論壇論文集[C];2011年

7 王衛(wèi)龍;郭揆常;陸文偉;;東海邊際氣田開發(fā)水下生產系統(tǒng)關鍵技術研究[A];2006年度海洋工程學術會議論文集[C];2006年

8 郭宏;屈衍;盧青針;閻軍;岳前進;;深水水下生產系統(tǒng)臍帶纜結構設計[A];第十五屆中國海洋(岸)工程學術討論會論文集(上)[C];2011年

9 沈永俊;王東寶;;水下生產系統(tǒng)數據庫研究[A];2007年度海洋工程學術會議論文集[C];2007年

10 王鳳云;;水下生產系統(tǒng)的基礎研究[A];2012年度海洋工程學術會議論文集[C];2012年

相關重要報紙文章 前5條

1 記者 甘豐錄;“863”計劃——水下生產系統(tǒng)臍帶纜年底出樣品[N];中國船舶報;2011年

2 記者 王孫;水下“生命線”有望實現國產化[N];中國船舶報;2013年

3 記者 張奕邋通訊員 董平;東海邊際氣田有望開發(fā)[N];解放日報;2008年

4 記者 張銀炎;盡快實現海上油氣生產設備國產化[N];中國船舶報;2009年

5 馬愛平;中國海洋大學創(chuàng)新我國深水油氣開發(fā)裝備[N];中國海洋報;2013年

相關博士學位論文 前2條

1 王欣;油氣田水下生產系統(tǒng)基礎的沖刷研究[D];中國海洋大學;2015年

2 盧青針;水下生產系統(tǒng)臍帶纜的結構設計與驗證[D];大連理工大學;2013年

相關碩士學位論文 前1條

1 馬增驥;水下生產系統(tǒng)剛性跨接管結構極限承載分析研究[D];上海交通大學;2012年

,

本文編號:1655566

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1655566.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶957e5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com