天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 石油論文 >

雙長鏈醇醚甜菜堿的合成及性能研究

發(fā)布時間:2018-03-15 21:33

  本文選題:雙長鏈醇醚羧基甜菜堿 切入點:合成 出處:《江南大學》2015年碩士論文 論文類型:學位論文


【摘要】:堿-表面活性劑-聚合物(ASP)三元復合驅是我國化學驅提高石油采收率的主要技術,但近年來的礦場試驗表明,使用堿尤其是強堿會帶來一些副作用,因此以SP二元驅取代ASP三元驅成為新的研究方向。研究發(fā)現(xiàn),雙十二烷基甲基羧基甜菜堿(di C12B)在無堿條件下具有優(yōu)良的降低原油/水界面張力性能,但由于具有雙長鏈烷基,其水溶性較差并且在油砂/水界面有較大的吸附損失。另一方面以椰子油醇聚氧乙烯醚(C12-14EO2OH)為原料合成的雙長鏈醇醚甲基羧基甜菜堿,不僅保留了di C12B的優(yōu)良性能,而且產(chǎn)品的水溶性有顯著改善,在油砂/水界面的吸附損失明顯減小。由于工業(yè)級醇醚中EO數(shù)具有較寬的分布,有關EO數(shù)對性能的影響尚不清晰,為此本研究試圖合成具有單一EO數(shù)的雙十二醇聚氧乙烯醚甲基羧基甜菜堿系列產(chǎn)品,以考察EO數(shù)對有關驅油性能的影響。以溴代十二烷和一縮二乙二醇(或二縮三乙二醇,三縮四乙二醇)為原料,合成了單分布的十二醇聚氧乙烯醚(C12EOnOH,n=2,3,4),再經(jīng)氯代、與一甲胺縮合、最后與氯乙酸鋰反應得到了目標產(chǎn)物雙十二醇聚氧乙烯醚甲基羧基甜菜堿(di C12EOnB,n=2,3,4)。核磁、質譜、化學分析等表征證明所得產(chǎn)品的分子結構與目標化合物一致。對diC12EOnB(n=2,3,4)系列產(chǎn)品的水溶性、基本表面活性、降低正構烷烴/水和大慶原油/地層水界面張力的特性以及在石英砂/水界面的吸附損失進行了評價。結果表明,di C12EOnB(n=2,3,4)在水中的溶解度隨EO數(shù)的增加而增加,25?C時di C12EO4B的溶解度達到1.5?10-4 mol/L,是di C12B的3倍。di C12EOnB(n=2,3,4)基本保持了di C12B的高表面活性。cmc在(1.15~2.0)?10-5 mol/L,?cmc為27.0~29.5 m N/m,在空氣/水界面上的飽和吸附量??為(6.2~5.7)?10-10 mol/cm2。其中隨著n的增大,cmc,?cmc以及分子截面積a?略有增大。di C12EOnB(n=2,3,4)單獨使用時降低正構烷烴/水界面張力的性能優(yōu)于di C12B,其中di C12EO2B和di C12EO4B分別能將C13~C15和C7~C9正構烷烴/水界面張力降至超低(0.01 m N/m),di C12EO3B能將C7~C16正構烷烴/水界面張力降至10-2 m N/m數(shù)量級。在降低大慶原油/地層水界面張力方面,di C12EOnB(n=2,3,4)單獨使用能將大慶原油/地層水界面張力降至10-2 m N/m數(shù)量級;其中di C12EO2B親油性仍偏大,通過與水溶性同系物C16B復配,能在較寬(1.25~7.5 mmol/L)的總濃度范圍內(nèi)將大慶原油/地層水界面張力降至超低;di C12EO3B親油性略偏大,與水溶性同系物C16B復配能將大慶原油/地層水界面張力降至超低,但合適的總濃度范圍縮小(5~7.5 mmol/L);而di C12EO4B親水性略偏大,與親油性同系物di C12B和水溶性同系物C16B三元復配,能在較寬(0.625~5.0mmol/L)的總濃度范圍內(nèi)將大慶原油/地層水界面張力降至超低。三種化合物中di C12EO2B為最佳。di C12EOnB(n=2,3,4)在石英砂/水界面的吸附具有飽和吸附量,飽和吸附量隨n增加略有下降,其中n值最大的di C12EO4B的飽和吸附量比di C12B下降了35%?傮w上EO基團的引入對降低在石英砂/水界面的吸附損失影響不夠顯著。
[Abstract]:Alkali surfactant polymer (ASP) three ASP flooding is the main technology to improve oil recovery of chemical flooding, but the field tests show that in recent years, especially the use of alkali and alkali will bring some side effects, so SP to two yuan three yuan to replace the ASP drive drive has become a new research direction. Found that di dodecylmethyl carboxybetaine (DI C12B) in non alkaline conditions with excellent performance to reduce the crude oil / water interfacial tension, but because of the double long Lian Wanji, due to its poor water solubility and in oil / water interface has larger adsorption loss. On the other hand with alkyl polyoxyethylene ether (C12-14EO2OH) as raw materials the synthesis of double long-chain carboxyl betaine methyl ether, not only retains the excellent performance of di C12B, and the water solubility of the product has been improved in oil / water interface adsorption loss decreases obviously. The industrial grade has a number of EO in ether Wide distribution, about the effect of EO number on the performance is not clear, the purpose of this study is to synthesize EO single number Double Twelve alcohol polyoxyethylene ether methyl carboxyl betaine series of products, in order to study the influence of EO number on the oil displacement performance. Twelve alkyl bromide with diethylene glycol and triethylene glycol (or two. Three shrink four ethylene glycol) as raw materials, twelve alcohol polyoxyethylene ether single distribution were synthesized (C12EOnOH, n=2,3,4), and then by chlorination, condensation and methylamine, finally reacted with chloroacetic acid lithium to obtain target products Double Twelve methyl alcohol polyoxyethylene ether (DI C12EOnB, n=2,3,4 carboxybetaine). NMR, mass spectrometry, chemical analysis indicates that the molecular structure of the target compound and the product of diC12EOnB (n=2,3,4) series of products of the basic water solubility, surface activity, lower n-alkanes / water and Daqing crude oil / water interfacial tension characteristics and Quartz sand / water interface adsorption loss were evaluated. The results showed that di C12EOnB (n=2,3,4) in water solubility increases with the increase in the number of EO increased 25? C solubility of di C12EO4B reached 1.5? 10-4 mol/L, di C12B.Di C12EOnB (n=2,3,4) 3 times remained the high surface activity of.Cmc di C12B (1.15~2.0) in 10-5? Mol/L, CMC? 27.0~29.5 m N/m, the saturated adsorption capacity of the air / water interface (6.2~5.7) for??? 10-10 mol/cm2. with the increase of N, CMC, CMC and a molecular cross-sectional area of?? (n= 2,3,4 C12EOnB.Di increased slightly when used alone) reduce the n-alkane / water interfacial tension is better than di C12B, di C12EO2B and di C12EO4B respectively, which can be C13~C15 and C7~C9 alkanes / water interfacial tension to ultra low (0.01 M N/m), di C12EO3B C7~C16 can be normal alkane / water interfacial tension to 10-2 m N/ m magnitude. In lower Daqing crude oil / formation Water interfacial tension, di C12EOnB (n=2,3,4) can be used alone in Daqing crude oil / water interfacial tension to 10-2 m N/ m magnitude; Di C12EO2B lipophilic is still relatively large, and the water soluble homologue C16B was in wide (1.25~7.5 mmol/L) Daqing crude oil / water interfacial tension to super low total concentration range; Di C12EO3B lipophilic slightly, and the water soluble compound can be C16B homologues of Daqing crude oil / water interfacial tension to low, but the total suitable concentration range reduced (5~7.5 mmol/L); while di C12EO4B is slightly larger and hydrophilic, lipophilic homologues Di and water C12B soluble homologue C16B three compound, in a wide (0.625~5.0mmol/L) Daqing crude oil / water interfacial tension to ultra low concentration range. The total three compounds in di C12EO2B is the best.Di C12EOnB (n=2,3,4) has full adsorption on quartz sand / water interface And the amount of adsorption and saturated adsorption decreased slightly with the increase of n. The saturated adsorption capacity of di C12EO4B with maximum n value decreased by 35%. compared with that of di C12B. In general, the introduction of EO group had little effect on reducing the adsorption loss at quartz sand / water interface.

【學位授予單位】:江南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TE357.46

【參考文獻】

相關期刊論文 前10條

1 黃毅;朱紅;王芳輝;張永明;左言飛;魏曉崗;;一種新型環(huán)烷基磺酸鹽驅油劑的制備及性能[J];北京交通大學學報;2008年06期

2 王斌;孟雙明;溫月麗;郭永;樊月琴;;分光光度法研究兩性聚丙烯酰胺的水溶性[J];北京聯(lián)合大學學報(自然科學版);2007年03期

3 廖傳文;張文艷;王海江;崔正剛;;直接滴定法測定甜菜堿產(chǎn)品中活性物和游離叔胺的含量[J];日用化學工業(yè);2011年01期

4 程杰成,廖廣志,楊振宇,李群,姚玉明,徐典平;大慶油田三元復合驅礦場試驗綜述[J];大慶石油地質與開發(fā);2001年02期

5 張海紅;王曉燕;牛麗偉;盧祥國;;SJT-B表面活性劑/聚合物二元復合體系性能評價[J];大慶石油學院學報;2009年01期

6 徐進云,鄭幗,葛啟,周存,魏俊富;十八烷基甜菜堿的合成與應用性能[J];紡織學報;2005年01期

7 秦旗;;淺談微生物采油技術[J];硅谷;2008年08期

8 眭純?nèi)A;厲華;畢新忠;;世界三次采油現(xiàn)狀及發(fā)展趨勢[J];國外油田工程;2010年12期

9 龍海華;顏利民;宋冰蕾;裴曉梅;蔣建中;崔正剛;;1,3-雙癸基甘油醚乙氧基化物的合成與性能研究[J];日用化學工業(yè);2013年03期

10 蔡紅巖;王紅莊;王強;羅文利;郎哲思;;油酸酰胺丙基甜菜堿的合成與性能[J];日用化學工業(yè);2013年06期

相關博士學位論文 前3條

1 焦艷華;改性木質素磺酸鹽的合成及其在三次采油中的應用研究[D];大連理工大學;2005年

2 趙宇;系列烷基苯磺酸鹽純化合物的合成及界面性能的研究[D];大連理工大學;2006年

3 張向宇;無堿二元驅油體系配方及驅油效果影響因素研究[D];大慶石油學院;2010年

相關碩士學位論文 前10條

1 宋紅星;新型驅油用非離子表面活性劑的合成與性能研究[D];江南大學;2011年

2 馬克新;羥基磺基甜菜堿表面活性劑及復配體系界面特性研究[D];東北石油大學;2011年

3 張騰;兩性表面活性劑烷基酰胺羥基磺基甜菜堿的合成及性能研究[D];北京工商大學;2010年

4 屈志強;酰胺基改性羧酸鹽類表面活性劑的合成及性能研究[D];北京工商大學;2010年

5 李丹萍;酰胺型雙親油基甜菜堿的合成與性能研究[D];江南大學;2012年

6 段文猛;ASP三元復合驅中各驅油劑的吸附滯留研究[D];西南石油學院;2002年

7 梁勤學;脂肪醇常壓胺化法制單烷基叔胺工藝開發(fā)[D];四川大學;2003年

8 李俊剛;改變巖石潤濕性提高原油采收率機理研究[D];大慶石油學院;2006年

9 鞠野;一元/二元/三元驅油體系微觀驅油機理研究[D];大慶石油學院;2006年

10 林士英;烷基羥基磺基甜菜堿黏彈性表面活性劑的合成與性能研究[D];大慶石油學院;2007年

,

本文編號:1616872

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1616872.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶32693***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com