組合可調(diào)式超音速分離器設(shè)計(jì)與測試系統(tǒng)研究
本文關(guān)鍵詞: 超音速分離 流場模擬 測試系統(tǒng) 出處:《西安石油大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:超音速分離器是一種新型的天然氣分離處理設(shè)備,具有系統(tǒng)簡單、無需添加化學(xué)藥劑、無需動(dòng)力裝置的特點(diǎn)。但目前國內(nèi)的研究理論尚不成熟,暫不具備商業(yè)使用價(jià)值。本文設(shè)計(jì)了一套實(shí)驗(yàn)用組合可調(diào)式超音速分離器,并利用數(shù)值模擬的方法對(duì)分離器結(jié)構(gòu)參數(shù)對(duì)流場的影響進(jìn)行分析。以分離器為核心部件,進(jìn)行室內(nèi)實(shí)驗(yàn)用測試系統(tǒng)研究。利用現(xiàn)有的文獻(xiàn)資料,考慮到便于進(jìn)行結(jié)構(gòu)尺寸影響研究,分離器結(jié)構(gòu)使用組合可調(diào)的方式,噴管段按照從小到大設(shè)置三種入口角度,每種入口角度喉部直徑均分別設(shè)置小中大三種尺寸。分離段中分離翼設(shè)計(jì)為可滑動(dòng)結(jié)構(gòu),考慮密封問題,將分離翼的安裝位置設(shè)為5位可調(diào)節(jié)結(jié)構(gòu),分離翼角度可旋轉(zhuǎn)調(diào)節(jié)。擴(kuò)壓段通過加裝環(huán)形墊塊調(diào)節(jié)長度。對(duì)這些組合可調(diào)結(jié)構(gòu)進(jìn)行調(diào)節(jié)搭配,可形成多種結(jié)構(gòu),便于實(shí)驗(yàn)研究。利用Fluent軟件,對(duì)所設(shè)計(jì)的分離器進(jìn)行數(shù)值模擬,選擇可壓縮模型,以理想空氣為介質(zhì),選擇中間參數(shù)的分離器模型模擬。模擬結(jié)果表明,該模型具備低溫制冷能力,可產(chǎn)生旋流分離效果。在該模型基礎(chǔ)上,分別改變?nèi)肟诮嵌、喉部尺寸及分離翼安裝位置進(jìn)行建模分析。結(jié)論如下:(1)其他尺寸不變,喉部越小,壓力降越大,最低溫度值越低,速度極值越高,但同時(shí)流場均勻性越差,低溫區(qū)域長度越短。因此在設(shè)計(jì)時(shí)取值不宜過于偏頗。(2)其他尺寸不變,入口角度越大,壓力損失越大,速度極值越高,極低溫度越低,但是流場的均勻性變差,低溫區(qū)域長度越短。入口角度的選擇亦需綜合分析考慮。(3)分離翼位置直接影響激波出現(xiàn)的位置,其他尺寸不變,分離翼位置越靠近入口,流場的均勻性越好,超音速低溫區(qū)越長,相應(yīng)的,獲得的低溫極值較差,流動(dòng)速度極值較小。激波出現(xiàn)的位置更為接近出口區(qū),激波對(duì)流場帶來的影響越小。因此在確定分離翼安裝位置時(shí),選擇更為接近入口的區(qū)域安裝,能夠獲得較好的流場特性。對(duì)組合可調(diào)式超音速分離器測試平臺(tái)的研究,確定了實(shí)驗(yàn)的操作參數(shù)入口含液濃度Ci和壓比Pr及性能評(píng)價(jià)參數(shù)分離效率Et和溫度降?T,并給出了相應(yīng)的計(jì)算計(jì)量方法;對(duì)實(shí)驗(yàn)裝置及設(shè)備安裝調(diào)試進(jìn)行了分析規(guī)劃;對(duì)實(shí)驗(yàn)中需重點(diǎn)關(guān)注的流量、溫度、壓力的測量展開研究,對(duì)關(guān)鍵部位的儀表進(jìn)行選型,并對(duì)喉部流速進(jìn)行測算;給出較為完整的實(shí)驗(yàn)方案及關(guān)鍵實(shí)驗(yàn)步驟;最后對(duì)實(shí)驗(yàn)的預(yù)期效果及擬解決的問題進(jìn)行假設(shè)與預(yù)測。
[Abstract]:Supersonic separator is a new type of natural gas separation and treatment equipment, with the characteristics of simple system, no addition of chemical agents, no power device, but the domestic research theory is not yet mature. For the time being, it is not of commercial value. A set of combined adjustable supersonic separators for experiment is designed in this paper. Numerical simulation method is used to analyze the influence of the structure parameters of the separator on the flow field. Taking the separator as the core part, the laboratory test system is studied, and the existing literature is used. Considering that it is convenient to study the influence of structure size, the splitter structure uses the combined adjustable mode, and the nozzle section sets three kinds of inlet angles according to small to large. The diameter of the throat of each inlet angle is divided into small, medium and large sizes. The separation wing in the separation section is designed as a sliding structure. Considering the sealing problem, the mounting position of the separation wing is set to a 5-bit adjustable structure. The angle of the separation wing can be rotated and adjusted, and the length of the diffuser section is adjusted by adding ring gasket. By adjusting and matching these combined adjustable structures, a variety of structures can be formed, which is convenient for experimental study. Fluent software is used. The designed separator is simulated numerically, the compressible model is selected, and the intermediate parameter is selected to simulate the separator with ideal air as the medium. The simulation results show that the model has the capability of low temperature refrigeration. On the basis of this model, the inlet angle, throat dimension and the installation position of the separation wing can be modeled and analyzed. The conclusion is as follows: 1) the smaller the throat is, the smaller the other dimensions are. The greater the pressure drop, the lower the minimum temperature, the higher the velocity extremum, but at the same time, the worse the uniformity of the flow field, the shorter the length of the low temperature region. The greater the inlet angle, the greater the pressure loss, the higher the velocity extremum and the lower the temperature, but the worse the uniformity of the flow field is. The shorter the length of the low temperature region, the more the inlet angle should be taken into account. The position of the separation wing directly affects the location of the shock wave, and the other dimensions remain unchanged, and the position of the separation wing is closer to the inlet. The better the uniformity of the flow field is, the longer the supersonic low temperature region is, and the corresponding low temperature extreme value is worse, the flow velocity extreme value is smaller, and the location of shock wave is closer to the exit region. The impact of shock flow field is smaller. Therefore, when determining the location of the separation wing installation, choose the area closer to the entrance. The research on the test platform of the combined supersonic separator is carried out. The experimental operating parameters, such as concentration C _ I, pressure ratio pr, separation efficiency et and temperature drop, were determined. The corresponding calculation method is given. The installation and debugging of the experimental device and equipment are analyzed and planned. The measurement of flow, temperature and pressure which should be paid more attention to in the experiment is studied, the instrument of key position is selected, and the velocity of throat is measured. The experimental scheme and key steps are given. Finally, the expected effect of the experiment and the problems to be solved are hypothesized and predicted.
【學(xué)位授予單位】:西安石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE96
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 宋婧;王麗;陳家慶;陳志明;;噴管超音速分離技術(shù)在天然氣脫水中的應(yīng)用研究[J];北京石油化工學(xué)院學(xué)報(bào);2010年01期
2 王克印;韓星星;張曉濤;劉耀鵬;陳吉潮;;縮擴(kuò)型超音速噴管的設(shè)計(jì)與仿真[J];中國工程機(jī)械學(xué)報(bào);2011年03期
3 吳小林;熊至宜;姬忠禮;;天然氣凈化用旋風(fēng)分離器氣液分離性能[J];化工學(xué)報(bào);2010年09期
4 朱斌;;氣液分離器的結(jié)構(gòu)優(yōu)化[J];計(jì)算機(jī)仿真;2010年01期
5 劉儀,劉斌,向一敏;擴(kuò)壓器進(jìn)氣道內(nèi)流及激波/邊界層干擾的數(shù)值研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);1997年02期
6 史雨;桑為民;陳志敏;;超音速噴管收縮擴(kuò)張段匹配問題研究[J];航空計(jì)算技術(shù);2013年06期
7 何策;張曉東;;國內(nèi)外天然氣脫水設(shè)備技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J];石油機(jī)械;2008年01期
8 王丹華;馬威;陸利蓬;;S-A模型在分離流動(dòng)模擬中的改進(jìn)[J];推進(jìn)技術(shù);2008年05期
9 江懷友;趙文智;張東曉;李治平;彭仕宓;;世界天然氣資源及勘探現(xiàn)狀研究[J];天然氣工業(yè);2008年07期
相關(guān)會(huì)議論文 前1條
1 康勇;;超聲速低溫氣液分離器物性變化分析[A];制冷空調(diào)新技術(shù)進(jìn)展——第四屆全國制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 楊志毅;油氣超音速旋流分離技術(shù)研究[D];西南石油學(xué)院;2004年
2 劉恒偉;超音速分離管的研發(fā)及其流動(dòng)與傳熱傳質(zhì)特性的研究[D];北京工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前6條
1 何霖;直連式超聲速風(fēng)洞與“超—超”混合層風(fēng)洞的設(shè)計(jì)和實(shí)驗(yàn)研究[D];國防科學(xué)技術(shù)大學(xué);2006年
2 龐會(huì)中;新型超音速氣體凈化分離裝置設(shè)計(jì)研究[D];北京工業(yè)大學(xué);2009年
3 劉曉敏;錐心式超音速旋流分離器小壓比實(shí)驗(yàn)性能研究[D];大連理工大學(xué);2012年
4 楊帆;氣—液兩相流高速旋流分離器研究[D];西安石油大學(xué);2011年
5 杜永軍;超聲速旋流分離器結(jié)構(gòu)設(shè)計(jì)及流場模擬[D];中國石油大學(xué);2007年
6 林煜翔;風(fēng)力助航船舶襟翼帆的設(shè)計(jì)研究[D];大連海事大學(xué);2013年
,本文編號(hào):1473276
本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1473276.html