預(yù)交聯(lián)凝膠顆粒堵水調(diào)剖與表面活性劑驅(qū)油體系的分子動力學(xué)模擬
本文關(guān)鍵詞:預(yù)交聯(lián)凝膠顆粒堵水調(diào)剖與表面活性劑驅(qū)油體系的分子動力學(xué)模擬 出處:《山東大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 聚集行為 預(yù)交聯(lián)凝膠顆粒 表面活性劑 分子動力學(xué)模擬
【摘要】:石油被稱為"工業(yè)的血液",可以被煉制成汽油、煤油、柴油、潤滑油等,也可以用來合成橡膠、洗滌劑、炸藥、燃料等被廣泛應(yīng)用在人們生活的各個領(lǐng)域。石油作為不可再生資源,主要來源于地質(zhì)開采。近年來,經(jīng)過傳統(tǒng)開采技術(shù)開采之后,油井含水量高,并且油層中剩余油的分布較為分散,多集中在水驅(qū)未能有效波及的巖石空隙。因此選擇經(jīng)濟高效的堵水調(diào)剖劑及耐高溫耐鹽的驅(qū)油劑,可以更加有效的提高石油的采收率。預(yù)交聯(lián)凝膠顆粒和醇醚類表面活性劑因其綠色環(huán)保,成本低廉,堵水調(diào)剖效果顯著從而引起了廣大科研工作者的興趣并在探討相關(guān)的作用機理方面進行努力研究,以期望尋找效果更加突出的化合物應(yīng)用到實際采油過程中。隨著研究的逐漸深入以及計算機水平的迅猛發(fā)展,采用分子動力學(xué)模擬方法在分子水平上探討聚合物及表面活性劑堵水調(diào)剖作用顯得尤為重要。與傳統(tǒng)的實驗方法相比,分子動力學(xué)模擬方法可以更加直觀的觀察到分子間的相互作用,從而提出合理的機理,對實驗合成及開發(fā)研究具有指導(dǎo)性意義。本論文主要圍繞預(yù)交聯(lián)凝膠顆粒(Preformed particle gel,PPG))在水溶液中的溶脹、孔道中的運移行為及表面活性劑驅(qū)油過程耐鹽機理進行了 一系列研究:采用分子動力學(xué)模擬的方法對預(yù)交聯(lián)的凝膠顆粒在水溶液中發(fā)生溶脹、在水驅(qū)壓力下巖石中的運移過程、不同孔徑納米孔道中和不同表面結(jié)構(gòu)的納米孔道內(nèi)表面中的運移過程及醇醚類表面活性劑十二烷基聚氧乙烯羧酸鹽不同溶液中的聚集行為進行探討,通過分析體系中不同分子間相互作用來探討合理的作用機制,為實驗合成及工業(yè)生產(chǎn)提供了理論指導(dǎo)。本論文的主要研究內(nèi)容和創(chuàng)新成果歸納如下:(1)通過分子動力學(xué)模擬探討研究了 PPG在遇水溶脹的過程,解釋了親水基團上中心原子水化能力不同的原因。通過不同的模擬分析,我們發(fā)現(xiàn)PPG溶脹主要是因為在水溶液中其側(cè)鏈的親水基團的水化作用引起的,親水基團的中心原子帶負(fù)電荷,其通過氫鍵和靜電作用在其周圍極化形成一層排列規(guī)整、有序而且緊密的水化層,并牢牢的將水分子束縛在其中。我們通過對比預(yù)交聯(lián)凝膠顆粒在水溶液中溶脹前后的的回旋半徑、體積和溶劑可及表面積詮釋了溶脹過程。然后通過對比了 PPG兩種親水基團的三個中心原子周圍水分子的弛豫時間,發(fā)現(xiàn)水化能力O(COO-)O(CONH2)N(CONH2),并從體系的水化層結(jié)構(gòu)和氫鍵方面解釋了-COO-上氧原子水化能力更強的原因。從空間分布函數(shù)、徑向分布函數(shù)和偶極分布圖進行進一步分析,發(fā)現(xiàn)位于-COO-周圍的水分子排列更加規(guī)整有序并且緊密,而且周圍形成了更多的壽命也相對較長的氫鍵。因此我們認(rèn)為水化層內(nèi)的水分子通過氫鍵形成的網(wǎng)格結(jié)構(gòu)對水化層的穩(wěn)定也起到了重要的作用。這些研究,對實際應(yīng)用中設(shè)計合成新型的凝膠顆粒或者改進現(xiàn)有凝膠顆粒提供了理論基礎(chǔ)。(2)在探討了預(yù)交聯(lián)凝膠顆粒在水溶液中的溶脹過程的基礎(chǔ)上,采用分子動力學(xué)方法模擬研究了預(yù)交聯(lián)凝膠顆粒在水驅(qū)壓力下的地下巖石孔隙中的運移過程。通過分析其均方根位移、溶劑可及表面積隨模擬時間的變化進一步驗證了聚集體在水溶液中會發(fā)生溶脹。并發(fā)現(xiàn)在納米孔道內(nèi)表面形成了高度有序且結(jié)合緊密的厚度約為O.4nm的水化層。通過對體系的氫鍵分析發(fā)現(xiàn),水分子與納米孔內(nèi)表面的Si-OH通過氫鍵相互作用被束縛在納米孔內(nèi)表面附近,并形成穩(wěn)定的網(wǎng)格結(jié)構(gòu)。通過計算體系中親水基團和水分子之間的的PMF發(fā)現(xiàn),H2O分子與Si-OH之間易結(jié)合難解離。從而驗證了水化結(jié)構(gòu)的穩(wěn)定性。通過聚集體在孔道中的運移過程的模擬,發(fā)現(xiàn)運移過程中水驅(qū)外力需要克服PPG周圍水化層內(nèi)的氫鍵網(wǎng)格及PPG與納米孔道內(nèi)表面的相互作用帶來的阻力,而納米孔道內(nèi)表面Si-OH與水分子間形成的水化層結(jié)構(gòu)減少了預(yù)交聯(lián)凝膠顆粒與納米孔道內(nèi)表面的相互作用,類似于潤滑劑,從而減少了在運移過程中其需要克服的阻力。我們的模擬結(jié)果從分子水平上解釋了預(yù)交聯(lián)凝顆?椎乐羞\移的機理,為實驗數(shù)據(jù)提供了理論支持,并為實驗上及三次采油堵水調(diào)剖材料選擇及工業(yè)生產(chǎn)提供了理論指導(dǎo)。(3)采用分子模擬中的拉伸動力學(xué)方法,模擬了 PPG聚集體由大孔徑納米孔道中運移到小孔徑納米孔道中的過程。通過對運移過程中PPG聚集體在孔道軸向上回旋半徑、均方根位移以及PPG聚集體親水基團周圍水化層內(nèi)水分子數(shù)目的變化情況,我們發(fā)現(xiàn)在運移過程中PPG聚集體通過脫水、變形從大孔徑納米孔道運移到小孔徑納米孔道中;通過分析PPG聚集體構(gòu)象能的變化及親水基團與水化層內(nèi)水分子的均力勢進一步探討了其變形脫水機制。當(dāng)PPG聚集體從大孔徑納米孔道中被拉伸進入到小孔徑納米孔道中時,構(gòu)象能升高,其親水基團與水分子解離。外力拉伸PPG進入小孔徑納米孔道是需要克服親水基團與水分子解離所需要跨越的能壘。通過我們模擬分析,從微觀角度探討了 PPG聚集體在納米孔道運移的機制,為石油開采過程用預(yù)交聯(lián)凝膠顆粒的堵水調(diào)剖機制從而提高原油開采率提供理論基礎(chǔ)。(4)我們對PPG在不同羥基化的二氧化硅納米孔內(nèi)運移行為進行了一系列的非平衡分子動力學(xué)模擬。通過對納米二氧化硅納米孔內(nèi)表面100%、75%和50%羥基化三種不同的體系的模擬發(fā)現(xiàn)羥基化程度的增加,減小了 PPG運移過程所需要施加的外力。而通過對能量的分析,我們知道納米孔內(nèi)表面附近的束縛水在PPG的運移中起到至關(guān)重要的作用。從而我們推測納米孔內(nèi)表面的化學(xué)組成和微觀結(jié)構(gòu)通過形成不同性質(zhì)的水化層從而對PPG的運移產(chǎn)生了重要的影響。隨著納米孔內(nèi)表面親水性的增強,對應(yīng)的水化層更加緊密,且與孔內(nèi)表面更接近。通過計算界面水分子弛豫時間、擴散系數(shù)和氫鍵壽命對體系的動力學(xué)性質(zhì)進行了分析。納米孔內(nèi)表面羥基化程度越高,則水分子弛豫時間越長,但是擴散系數(shù)和氫鍵壽命卻相反。通過本論文的分析,我們發(fā)現(xiàn)不同羥基化程度的,也就是親水性不同的納米孔內(nèi)表面會形成不同結(jié)構(gòu)的水化層結(jié)構(gòu);納米孔的表面性質(zhì)通過對其周圍水化層結(jié)構(gòu)產(chǎn)生影響從而影響PPG在納米孔道中的運移行為。(5)通過分子動力學(xué)方法研究探討醇醚類表面活性劑與烷基類表面活性劑的耐鹽性能。我們發(fā)現(xiàn)鈣離子與表面活性劑之間形成橋聯(lián)結(jié)構(gòu),降低膠束極性頭之間的靜電作用,從而膠束的結(jié)合更為緊致。通過分析SDC和AEC的極性頭與水的徑向分布函數(shù)及極性頭與Na+、Ca2+之間的均力勢發(fā)現(xiàn)AEC耐鹽性能要更高,我們從分子尺度上解釋了驅(qū)油性表面活性劑的耐鹽機理,為實際應(yīng)用中合成更加高效的驅(qū)油類表面活性劑提供了理論支持。
[Abstract]:Oil is known as "industrial blood", can be refined into gasoline, kerosene, diesel oil, lubricating oil, can also be used for synthetic rubber, detergent, explosives, fuel is widely used in various fields of people's life. The oil as a non renewable resources, mainly from geology and mining. In recent years, after the traditional mining technology for mining, oil wells with high water content, and the distribution of remaining oil in the reservoir is more dispersed, more concentrated flooding rock gap failed to effectively spread in the water. So the choice of oil displacement agent efficient water shutoff agent and high temperature and salt resistance, can effectively improve the efficiency of oil recovery. Crosslinked gel particles and ether surfactant because of its green environmental protection, low cost, water shutoff effect which aroused the interest of scientists and mechanism on related research efforts, in order to find The effect of a more prominent compound is applied to the actual production process. With the deeper research and the level of computer and the rapid development of the molecular dynamics at the molecular level of polymer and surfactant, water shutoff effect is particularly important simulation method. Compared with the traditional experimental method, molecular dynamics simulation method can be more intuitive to observe the interaction between molecules, so as to put forward a reasonable mechanism, has guiding significance to the experimental synthesis of research and development. This thesis mainly focuses on the pre crosslinked gel particles (Preformed particle gel, PPG)) swelling in aqueous solution, migration behavior and surface active agent in the pore of the oil displacement process carried out a series of study on the mechanism of salt tolerance by molecular dynamics simulation method of pre crosslinked gel particle swelling in aqueous solution, in the rock under pressure in water flooding The migration process, discusses the aggregation behavior of nano pore with different pore sizes and different surface structure of nano pore surface in the migration process and the ether surfactant twelve alkyl polyoxyethylene ether carboxylate in different solutions, through different molecular interaction analysis system to study the mechanism of action of reasonable, provides a theoretical guidance for industrial production and experimental synthesis. The main research contents and innovative achievements are summarized as follows: (1) by molecular dynamics simulations to investigate the process of PPG in water swelling, explains why in the heart of atomic hydrophilic hydration ability different. Through simulation analysis of different, we found that PPG is mainly due to the hydration swelling the hydrophilic side chains in aqueous solution by the central atom of negatively charged hydrophilic groups, through hydrogen bonding and electrostatic interaction in the surrounding polarization The formation of a layer of ordered, orderly and close the water layer, and firmly bound water molecules in them. We compared crosslinked gel particles in aqueous solution before and after the swelling of the radius of gyration, and the volume of the solvent accessible surface area. And then through the interpretation of the swelling process of the ratio of water molecules around PPG two a hydrophilic group three atom relaxation time, found that the hydration ability of O (COO-) O (CONH2) N (CONH2), and from the system of the hydration layer structure and hydrogen bond reason -COO- oxygen atom hydration ability. From the spatial distribution function, radial distribution function and dipole distribution map for further analysis, found that the water molecules located around -COO- more orderly and closely, but also formed around the more life is relatively long. So we think that the hydrogen bonding of water molecules in the hydration layer by means of hydrogen bond network Stable lattice structure on the hydration layer also plays an important role. The research on the practical application of the design and synthesis of novel gel particles or provides a theoretical basis for improving the existing gel particles. (2) based on the swelling process of crosslinked gel particles in aqueous solution on the crosslinked gel particles in the transport process of underground water flooding rock pore pressure under the simulated by molecular dynamics method. Through the analysis of the mean square displacement, solvent changes and surface area with the simulation time to further validate the aggregates will occur in aqueous solution. The swelling and found in the nanopores formed on the surface of highly ordered and combined close the thickness of O.4nm hydration layer. Based on the system of hydrogen bond analysis found that water molecules and nano hole Si-OH through hydrogen bonding interactions trapped near the surface in nanopores, and The formation of grid structure. Through the calculation of the PMF system between hydrophilic group and water molecule found between H2O molecules and Si-OH combined with difficult to verify the stability of the water dissociation structure. Through the simulation of transport process in the pores of the aggregates, found the water flooding forces need to bring overcome interaction around PPG hydration layer of hydrogen bonds within the grid and PPG and nanopores surface resistance during the process of migration, and the formation of nano pore surface and Si-OH between water molecules in the hydration layer structure reduces the precrosslinking interaction of gel particles with nano pore surfaces, similar to the lubricant, thus reducing the need to overcome in the migration process resistance. Our simulation results explain the molecular mechanism of precrosslinking PQRTICLES migration channels, provides theoretical support for the experimental data, and for the three time and oil blocking Water industrial production and section material selection provides a theoretical guidance. (3) the tensile dynamic method of molecular simulation, simulation of the PPG aggregates by a large aperture in nanometer channel migration to small aperture in nanometer channel. Based on the migration process of PPG aggregates in the axial channel cyclotron radius, RMS displacement and PPG aggregates of hydrophilic hydration layer around the number of water molecules changes, we found that during the migration process of PPG aggregates by dehydration, deformation from large aperture nano pore migration to small pore size in nanometer channel; both hydrophilic and hydrophobic forces and through the analysis of the PPG aggregates conformation can the layer of water molecules to further explore the potential the deformation mechanism of dehydration. When PPG aggregates from large aperture nano pore is stretched into a small aperture in nanometer channel, conformational energy increased, the hydrophilic group and water molecule from solution PPG. The force stretching into the small aperture nanopores are needed to overcome the hydrophilic group and water molecule dissociation required across the barrier. Through our simulation analysis, discusses the mechanism of PPG aggregates in nano pore migration from the microscopic point of view, for the oil extraction process with water shutoff mechanism of pre crosslinked gel particles to improve and provide a theoretical basis for crude oil extraction rate. (4) we conducted a series of non-equilibrium molecular dynamics simulation on the migration behavior of PPG in different hydroxylated silica nanopores. The nano silica nano hole in the surface of the 100%, 75% and 50% simulated hydroxylation of three different systems were found to increase the degree of hydroxylation, reduced by PPG the migration processes needed for the applied force. Through analysis of energy, we know that the bound water near the surface of the nano hole plays a crucial role in PPG migration. Thus We speculate that the chemical composition and microstructure of nano hole surface by forming a hydration layer with different properties and migration of PPG had a significant impact. With the increase of nano hole surface hydrophilic, hydration layer corresponds more closely, and the hole inner surface closer. By calculating the interfacial water molecule relaxation the time dynamics of diffusion coefficient and hydrogen bond lifetime of system is analyzed. The higher the nanoporous surface hydroxylation degree, water molecular relaxation time is longer, but the diffusion coefficient and the hydrogen bond lifetime is the opposite. Through the analysis, we found that different degree of hydroxylation, which is hydrophilic nano hole the inner surface will form a different structure of the hydration layer structure; surface properties of nano hole through the hydration layer around the structure so as to influence the effect of migration behavior of PPG in nanopores. (5) by molecular The kinetic method study of ether surfactant and salt resistant properties of alkyl base surfactants. We found that the bridge structure is formed between calcium ion and surfactant micelles decrease the electrostatic interaction between the polar head, which combined with the micelles is more compact. The polar head and the water analysis of SDC and AEC in the radial direction the distribution function and the polar head and Na+, were found between the Ca2+ potential of AEC in salt tolerance to higher performance, we explained the mechanism of salt tolerance oil flooding surfactants from the molecular scale, for the practical application in the synthesis of more efficient oil displacement surfactant provides a theoretical support.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TE39
【相似文獻】
相關(guān)期刊論文 前10條
1 李東旭;侯吉瑞;趙鳳蘭;孫麗麗;王愛華;;預(yù)交聯(lián)顆粒調(diào)堵性能及粒徑與孔隙匹配研究[J];石油化工高等學(xué)校學(xué)報;2010年02期
2 柴德民,高國強,張桂意,段建輝;勝坨油田高耐鹽性預(yù)交聯(lián)水膨體合成條件優(yōu)化研究[J];海洋石油;2004年03期
3 謝全;蒲萬芬;刑楊梅;劉永兵;周小平;;預(yù)交聯(lián)凝膠封堵性實驗研究[J];特種油氣藏;2006年04期
4 李進良,兌愛玲,王德強,曾玲;復(fù)合預(yù)交聯(lián)顆粒調(diào)剖工藝技術(shù)研究及應(yīng)用[J];內(nèi)蒙古石油化工;2004年04期
5 周亞賢,侯天江,郭建華,孫舉,李旭東,王旭,張濱;耐溫抗鹽預(yù)交聯(lián)顆粒調(diào)剖劑的研制與性能評價[J];精細(xì)石油化工進展;2004年12期
6 龔險峰,穆哈拜,趙東,楊新明,褚玉寶,許國甫;預(yù)交聯(lián)顆粒調(diào)剖的改進[J];鉆采工藝;2005年03期
7 鄒建梅,何曉燕,婁志強,廖澤文,陳美穗,劉俊杰;預(yù)交聯(lián)顆粒調(diào)剖工藝的改進[J];內(nèi)蒙古石油化工;2005年04期
8 郭艷;李樹斌;呂帥;楊力生;王愷;;預(yù)交聯(lián)顆粒調(diào)剖劑的合成與性能評價[J];精細(xì)石油化工進展;2007年10期
9 趙修太;閆國峰;李宏;李超群;宋奇;;注聚過程中預(yù)交聯(lián)部分水解聚丙烯酰胺凝膠顆粒的防竄性能[J];化學(xué)研究;2012年02期
10 陳安;羅楊;烏永兵;;一種耐溫抗鹽預(yù)交聯(lián)疏水型水膨體的合成及性能評價[J];精細(xì)石油化工進展;2009年07期
相關(guān)會議論文 前1條
1 劉述忍;康萬利;楊潤梅;趙昊陽;徐斌;;十二烷基硫酸鈉對預(yù)交聯(lián)凝膠顆粒流變性的影響[A];流變學(xué)進展(2012)——第十一屆全國流變學(xué)學(xué)術(shù)會議論文集[C];2012年
相關(guān)博士學(xué)位論文 前2條
1 馬瑩;預(yù)交聯(lián)凝膠顆粒堵水調(diào)剖與表面活性劑驅(qū)油體系的分子動力學(xué)模擬[D];山東大學(xué);2017年
2 崔曉紅;驅(qū)油用預(yù)交聯(lián)體的合成及應(yīng)用研究[D];中國石油大學(xué)(華東);2012年
相關(guān)碩士學(xué)位論文 前3條
1 張崇;預(yù)交聯(lián)凝膠堵漏劑研制[D];中國石油大學(xué);2010年
2 王代剛;預(yù)交聯(lián)凝膠顆粒分散體系微觀滲流機制研究[D];中國石油大學(xué)(華東);2013年
3 景艷;新型預(yù)交聯(lián)顆粒流向改變劑的研制及應(yīng)用[D];西南石油學(xué)院;2004年
,本文編號:1424633
本文鏈接:http://www.sikaile.net/kejilunwen/shiyounenyuanlunwen/1424633.html