天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 施工技術(shù)論文 >

RC框架結(jié)構(gòu)整體抗震性能系數(shù)與綜合反應(yīng)修正系數(shù)研究

發(fā)布時(shí)間:2019-05-15 14:39
【摘要】:結(jié)構(gòu)整體抗震性能系數(shù)(Seismic Perfomance Factors, SPFs)是“結(jié)構(gòu)反應(yīng)修正系數(shù)R”、“整體超強(qiáng)系數(shù)RS”和“位移放大系數(shù)Cd”的統(tǒng)稱,它們是基于承載力抗震設(shè)計(jì)中確定設(shè)計(jì)地震力的關(guān)鍵因素,也是基于性能抗震設(shè)計(jì)中確定等延性非彈性反應(yīng)譜的主要依據(jù)。 美國、歐洲和日本等國家的抗震設(shè)計(jì)規(guī)范主要采用結(jié)構(gòu)反應(yīng)修正系數(shù)對設(shè)防烈度下的彈性反應(yīng)進(jìn)行折減來確定地震力,以考慮不同類型結(jié)構(gòu)延性的影響。但是,目前世界各國抗震設(shè)計(jì)規(guī)范或標(biāo)準(zhǔn)中對抗震性能系數(shù)的取值主要都是根據(jù)經(jīng)驗(yàn)確定的,且各規(guī)范之間取值的差異很大,因此,為了合理量化結(jié)構(gòu)整體抗震性能系數(shù),美國的FEMA P695提出了一套科學(xué)合理的概率抗震性能評定方法來評定按現(xiàn)行抗震規(guī)范規(guī)定的整體抗震性能系數(shù)所設(shè)計(jì)的結(jié)構(gòu)能否滿足預(yù)期的抗倒塌性能目標(biāo)。 我國1978年以前的抗震規(guī)范是通過結(jié)構(gòu)影響系數(shù)(即結(jié)構(gòu)反應(yīng)修正系數(shù)的倒數(shù))折減設(shè)防烈度下的彈性地震力來定義設(shè)計(jì)地震作用的。但是,在1989年以后修訂的三個(gè)版本的抗震規(guī)范中,都擯棄了結(jié)構(gòu)影響系數(shù)的概念,轉(zhuǎn)而采用眾值烈度(小震)下的彈性設(shè)計(jì)反應(yīng)譜直接計(jì)算總的水平地震作用標(biāo)準(zhǔn)值。為此,國內(nèi)很多學(xué)者對現(xiàn)行抗震規(guī)范的小震地震力理論和小震彈性設(shè)計(jì)法開始進(jìn)行反思,針對鋼結(jié)構(gòu)的整體抗震性能系數(shù)進(jìn)行了較為深入的研究,但是對于鋼筋混凝土結(jié)構(gòu)整體抗震性能系數(shù)的研究則相對較少。所以系統(tǒng)深入地研究鋼筋混凝土結(jié)構(gòu)整體抗震性能系數(shù)的量化與評定,是由彈性設(shè)計(jì)力向延性設(shè)計(jì)地震力轉(zhuǎn)變的關(guān)鍵科學(xué)問題,也是基于性能的抗震設(shè)計(jì)理論的重要基礎(chǔ)性問題。該問題的解決對于提高我國工程結(jié)構(gòu)抗震設(shè)計(jì)的科學(xué)性、合理性和經(jīng)濟(jì)性,盡快促進(jìn)性能設(shè)計(jì)理論在我國的應(yīng)用步伐具有重要的理論意義和現(xiàn)實(shí)意義。 本文以量大面廣的鋼筋混凝土框架結(jié)構(gòu)為研究對象,考慮不同設(shè)防烈度,嚴(yán)格按現(xiàn)行抗震規(guī)范設(shè)計(jì)了17個(gè)具有不同層數(shù)的典型鋼筋混凝土框架結(jié)構(gòu),采用OpenSees進(jìn)行有限元建模與分析,采用課題組的振動(dòng)臺試驗(yàn)數(shù)據(jù)和清華大學(xué)的試驗(yàn)數(shù)據(jù)進(jìn)行驗(yàn)證;針對所設(shè)計(jì)的典型結(jié)構(gòu),分別采用非線性靜力方法和非線性動(dòng)力方法對其整體抗震性能系數(shù)的需求值和能力值進(jìn)進(jìn)行了系統(tǒng)深入的分析,采用能力需求比的概念從確定性的角度對整體抗震性能系數(shù)進(jìn)行了評定,并聯(lián)合應(yīng)用調(diào)整倒塌裕度比和位移需求能力系數(shù)法從隨機(jī)性的角度對抗震性能系數(shù)的合理取值進(jìn)行了綜合概率評定,最終給出了其建議取值。由于目前國內(nèi)外對于抗震性能系數(shù)的研究很少考慮損傷結(jié)構(gòu)連續(xù)倒塌的魯棒性,為此,本文在傳統(tǒng)的結(jié)構(gòu)反應(yīng)修正系數(shù)基礎(chǔ)上,進(jìn)一步提出結(jié)構(gòu)“綜合反應(yīng)修正系數(shù)”的概念,通過引入抗震魯棒性系數(shù)對損傷結(jié)構(gòu)的抗震性能進(jìn)行評價(jià),從而實(shí)現(xiàn)在抗震設(shè)計(jì)中考慮地震作用下結(jié)構(gòu)連續(xù)倒塌的影響。 本文的主要研究內(nèi)容如下: 1)按照我國現(xiàn)行抗震設(shè)計(jì)規(guī)范,考慮不同設(shè)防烈度,設(shè)計(jì)了17個(gè)不同層數(shù)的RC框架結(jié)構(gòu),基于地震工程模擬平臺OpenSees,建立了17個(gè)結(jié)構(gòu)的非線性有限元模型。通過與結(jié)構(gòu)振動(dòng)臺試驗(yàn)以及結(jié)構(gòu)擬靜力倒塌試驗(yàn)的對比分析,驗(yàn)證了本文OpenSees模型的正確性與分析結(jié)果的準(zhǔn)確性。在此基礎(chǔ)上,,分別采用非線性靜力方法和非線性動(dòng)力方法,對所設(shè)計(jì)的RC框架結(jié)構(gòu)進(jìn)行分析,得到“臨界倒塌狀態(tài)”時(shí)結(jié)構(gòu)整體抗震性能系數(shù)的能力值及其變化規(guī)律。 2)分別采用靜力能力譜方法、動(dòng)力能力譜方法和時(shí)程分析方法,對所設(shè)計(jì)的RC框架結(jié)構(gòu)進(jìn)行分析,得到了不同強(qiáng)度需求譜作用下結(jié)構(gòu)整體抗震性能系數(shù)的需求值。提出了結(jié)構(gòu)抗震性能系數(shù)能力需求比的概念和計(jì)算方法,從確定性的角度對我國抗震規(guī)范所隱含的RC框架結(jié)構(gòu)的抗震性能系數(shù)進(jìn)行了評定。在此基礎(chǔ)上,進(jìn)一步采用本文得到的罕遇地震作用下結(jié)構(gòu)反應(yīng)修正系數(shù)的需求值,對我國抗震規(guī)范中給出的多遇地震影響系數(shù)曲線進(jìn)行了修正。 3)聯(lián)合應(yīng)用調(diào)整倒塌裕度比(Adjusted Collapse Margin Ratio, ACMR)和位移需求能力系數(shù)法(Demand and Capacity Factor Method, DCFM),對所設(shè)計(jì)的結(jié)構(gòu)是否具有一致的抗倒塌概率風(fēng)險(xiǎn)水準(zhǔn)和結(jié)構(gòu)能否滿足“臨界倒塌”性能目標(biāo)進(jìn)行了綜合評定,從不確定性的角度對RC框架結(jié)構(gòu)的整體抗震性能系數(shù)進(jìn)行了概率評定,并給出了結(jié)構(gòu)反應(yīng)修正系數(shù)的建議取值。 4)針對“側(cè)向連續(xù)倒塌”失效模式,采用基于備用荷載路徑的Pushover方法、靜力能力譜方法、IDA方法和位移需求能力系數(shù)法,分別從強(qiáng)度、耗能以及變形的角度,對所設(shè)計(jì)結(jié)構(gòu)的抗側(cè)向連續(xù)倒塌能力進(jìn)行了研究,并將基于承載力的魯棒性指標(biāo)分別拓展到基于譜加速度和變形的魯棒性指標(biāo)。通過結(jié)構(gòu)抗側(cè)向連續(xù)倒塌魯棒性系數(shù)對結(jié)構(gòu)反應(yīng)修正系數(shù)進(jìn)行修正,得到了考慮側(cè)向連續(xù)倒塌失效模式的結(jié)構(gòu)綜合反應(yīng)修正系數(shù)。 5)針對“豎向連續(xù)倒塌”失效模式,采用考慮構(gòu)件失效加載方案的Pushdown分析方法和考慮構(gòu)件失效時(shí)長的豎向IDA分析方法,分析了損傷結(jié)構(gòu)在初始屈服狀態(tài)、整體屈服狀態(tài)和承載能力極限狀態(tài)時(shí)的抗豎向連續(xù)倒塌能力,并得到了其相應(yīng)的抗豎向連續(xù)倒塌魯棒性指標(biāo)。采用豎向連續(xù)倒塌魯棒性系數(shù),進(jìn)一步對結(jié)構(gòu)綜合反應(yīng)修正系數(shù)進(jìn)行了修正。在此基礎(chǔ)上,采用結(jié)構(gòu)綜合反應(yīng)修正系數(shù)來得到結(jié)構(gòu)的設(shè)計(jì)地震作用,實(shí)現(xiàn)了在抗震設(shè)計(jì)中考慮結(jié)構(gòu)連續(xù)倒塌失效模式的影響。 通過上述內(nèi)容的研究,本文發(fā)現(xiàn):采用現(xiàn)行抗震規(guī)范所隱含的結(jié)構(gòu)整體抗震性能系數(shù)所設(shè)計(jì)的結(jié)構(gòu)能夠滿足預(yù)期的抗倒塌性能目標(biāo),但是結(jié)構(gòu)整體抗震性能系數(shù)取值比較保守,本文給出了結(jié)構(gòu)反應(yīng)修正系數(shù)的建議取值,從而為促進(jìn)我國抗震規(guī)范從小震彈性設(shè)計(jì)向中震延性設(shè)計(jì)和性能設(shè)計(jì)理論在我國抗震規(guī)范中的應(yīng)用提供了理論參考。同時(shí),本文提出的結(jié)構(gòu)綜合反應(yīng)修正系數(shù),可以統(tǒng)一考慮結(jié)構(gòu)抗側(cè)向連續(xù)倒塌和抗豎向連續(xù)倒塌魯棒性的影響,從而可以實(shí)現(xiàn)在抗震設(shè)計(jì)中考慮結(jié)構(gòu)連續(xù)倒塌的影響。
[Abstract]:The overall seismic performance factor (SPFs) of the structure is the general name of the "Structural response correction factor R", the "overall super-strong coefficient (RS)" and the "displacement amplification factor Cd". They are the key factors to determine the design earthquake force based on the seismic design of the bearing capacity, and also the main basis for determining the non-elastic response spectrum of the isoductility based on the performance anti-seismic design. The seismic design code of the countries such as the United States, Europe and Japan mainly uses the structural response correction factor to reduce the elastic response under the fortification intensity to determine the seismic force to take into account the shadow of the ductility of different types of structures. in that present world, however, the value of the seismic performance coefficient in the national seismic design code or standard of the world is mainly determined according to the experience, and the difference between the specifications is great, and therefore, in order to reasonably quantify the overall seismic performance of the structure, The number of FEMA P695 in the United States has put forward a scientific and reasonable probability-seismic performance evaluation method to evaluate whether the structure designed by the overall seismic performance coefficient specified in the current anti-seismic code can meet the expected anti-collapse performance. The seismic code before 1978 is defined by the structural influence coefficient (that is, the reciprocal of the structural response correction coefficient) and the elastic seismic force under the seismic fortification intensity to define the design earthquake. However, in the three versions of the anti-seismic code revised later in 1989, the concept of the structural influence coefficient is abandoned, and the total horizontal seismic effect is directly calculated by using the elastic design response spectrum under the mode of the public value intensity (small earthquake). For this reason, a lot of domestic scholars have made a reflection on the existing seismic force theory and the small-shock elastic design method of the current anti-seismic code, and the overall anti-seismic performance coefficient of the steel structure is in-depth. The research of the overall seismic performance coefficient of the reinforced concrete structure Therefore, the quantitative and evaluation of the overall seismic performance coefficient of the reinforced concrete structure is studied in-depth, which is the key scientific problem of the transformation of the elastic design force to the ductility design earthquake force, and is also an important basis of the performance-based seismic design theory. The solution of this problem is the scientific, reasonable and economical to improve the seismic design of the engineering structure in China. It is of great theoretical significance and present to promote the performance design theory as soon as possible in our country's application. In this paper, we design 17 typical reinforced concrete frame structures with different number of layers, and use OpenSees to carry out the finite element method. The model and analysis are carried out by using the vibration table test data of the research group and the test data of the Tsinghua University; for the typical structure designed, the demand value and the capability value of the integral anti-seismic performance coefficient are introduced into the system by using the nonlinear static method and the nonlinear dynamic method, respectively. In-depth analysis, the concept of capacity demand ratio is used to evaluate the overall anti-seismic performance coefficient from the definite angle, and the reasonable value of the anti-seismic performance coefficient is integrated by the combination of the adjustment collapse margin ratio and the displacement demand capacity coefficient method. The probability rating is finally given. In this paper, the robustness of the continuous collapse of the damage structure is seldom considered for the research of the seismic performance coefficient at home and abroad, and the structure is further proposed based on the traditional structural response correction factors. The concept of k> is introduced, and the seismic performance of the damaged structure is evaluated by introducing the anti-seismic robustness coefficient, so that the structure continuity under the earthquake action is considered in the anti-seismic design. The effect of the collapse. The content of the study is as follows:1) According to the current seismic design code in China, we have designed 17 RC frame structures with different levels, based on the seismic engineering simulation platform, OpenSees, and established 17 structures. The correctness of the OpenSees model in this paper is verified by the comparison and analysis of the structure vibration table test and the structure quasi-static collapse test. On the basis of this, the nonlinear static method and the nonlinear dynamic method are used to analyze the RC frame structure and obtain the overall seismic performance coefficient of the structure at the time of the "critical collapse state". 2) The static capacity spectrum method, the power capability spectrum method and the time history analysis method are respectively used for analyzing the designed RC frame structure, and the structure is obtained under the action of different intensity demand spectrum. The paper puts forward the concept and calculation method of the capacity demand ratio of the structural anti-seismic performance coefficient, and from the certainty angle to the RC frame structure implied by the anti-seismic code of China. The seismic performance coefficient is evaluated. On the basis of this, the demand value of the structural reaction correction coefficient under the effect of the rare earthquake in this paper is further adopted, and the multi-meeting earthquake is given in the seismic code of China. The influence coefficient curve is modified.3) The combined application adjusts the collapse margin ratio (ACMR) and the displacement demand capacity factor method (DCFM) to determine whether the designed structure has a consistent risk level and structure of anti-collapse probability and whether the structure meets the "trunk>" critical collection " The performance objective is comprehensively evaluated, and the overall anti-seismic performance coefficient of the RC frame structure is evaluated from the angle of uncertainty and given. The proposed value of the structural response correction factor (4) is based on the "lateral continuous collapse" failure mode, and adopts the Pushover method based on the backup load path, the static capacity spectrum method, the IDA method and the displacement demand capacity coefficient method, and the designed structure is respectively obtained from the angle of the strength, the energy consumption and the deformation, The anti-lateral continuous collapse capability is studied, and the robustness index based on the bearing capacity is expanded to Robustness index based on spectral acceleration and deformation is obtained. The structural response correction coefficient is modified by the structure anti-lateral continuous collapse robustness coefficient, and the side-to-side continuous collapse is obtained. In view of the failure mode of the "vertical continuous collapse", a Pashdown analysis method considering the failure loading scheme of the component and a vertical IDA analysis method considering the failure time of the component are adopted to analyze the damage structure in the initial yield state, the overall yield state and the bearing. The ability to resist vertical continuous collapse when the capacity is in a limit state and is obtained and the corresponding anti-vertical continuous collapse robustness index is adopted, and the vertical continuous collapse robustness coefficient is adopted, In this paper, the comprehensive response correction coefficient of the structure is modified. On this basis, the structure synthesis reaction correction coefficient is adopted to obtain the structure design earthquake action, and the seismic design is realized. The effect of the failure mode of the continuous collapse of the structure is considered in this paper. Through the research of the above-mentioned contents, it is found that the structure designed by using the overall seismic performance coefficient of the structure implied by the current anti-seismic code can meet the expected anti-collapse performance target. However, the value of the overall seismic performance coefficient of the structure is more conservative, and the recommended value of the structural response correction coefficient is given in this paper, so as to promote the design and performance of the shock-resistant standard from the small earthquake to the middle-shock ductility design and the performance design. In this paper, the theoretical reference for the application of the seismic code in China is provided. At the same time, the influence of the structure's anti-lateral continuous collapse and the robustness of the anti-vertical continuous collapse can be considered in a unified way, and the influence of the structure's anti-lateral continuous collapse and the robustness of the anti-vertical continuous collapse can be considered in a unified way, so that the
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:TU352.11;TU375.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫國華;何若全;顧強(qiáng);郁銀泉;方有珍;;半剛接鋼框架內(nèi)填RC墻結(jié)構(gòu)超強(qiáng)及強(qiáng)度折減系數(shù)研究[J];北京工業(yè)大學(xué)學(xué)報(bào);2009年10期

2 卓衛(wèi)東,范立礎(chǔ);結(jié)構(gòu)抗震設(shè)計(jì)中的強(qiáng)度折減系數(shù)研究[J];地震工程與工程振動(dòng);2001年01期

3 李英民,白紹良,賴明;不同地震水準(zhǔn)反應(yīng)譜之間的關(guān)系和罕遇地震作用設(shè)計(jì)反應(yīng)譜的確定[J];地震工程與工程振動(dòng);2003年06期

4 翟長海,公茂盛,張茂花,謝禮立,張敏政;工程結(jié)構(gòu)等延性地震抗力譜研究[J];地震工程與工程振動(dòng);2004年01期

5 呂西林,周定松;考慮場地類別與設(shè)計(jì)分組的延性需求譜和彈塑性位移反應(yīng)譜[J];地震工程與工程振動(dòng);2004年01期

6 李國強(qiáng);孫飛飛;;關(guān)于鋼結(jié)構(gòu)抗震存在的問題及建議[J];地震工程與工程振動(dòng);2006年03期

7 季靜;韓小雷;鄭宜;王建區(qū);陳勇;楊坤;;基于能力設(shè)計(jì)原理的雙肢剪力墻極限承載力研究[J];地震工程與工程振動(dòng);2006年04期

8 白紹良;李剛強(qiáng);李英民;韋鋒;;從R-μ-T關(guān)系研究成果看我國鋼筋混凝土結(jié)構(gòu)的抗震措施[J];地震工程與工程振動(dòng);2006年05期

9 李英民;吳雪萍;韋峰;白紹良;;按中、歐規(guī)范設(shè)計(jì)的鋼筋混凝土框架結(jié)構(gòu)抗震性態(tài)的對比分析[J];地震工程與工程振動(dòng);2007年06期

10 李英民;劉蘭花;韋鋒;白紹良;;鋼筋混凝土框架體系R-μ關(guān)系的分析驗(yàn)證[J];地震工程與工程振動(dòng);2008年02期

相關(guān)博士學(xué)位論文 前1條

1 楊俊芬;中心支撐鋼框架的結(jié)構(gòu)影響系數(shù)和位移放大系數(shù)研究[D];西安建筑科技大學(xué);2009年

相關(guān)碩士學(xué)位論文 前1條

1 孫亞民;抗震結(jié)構(gòu)非彈性位移估計(jì)研究[D];哈爾濱工業(yè)大學(xué);2006年



本文編號:2477578

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/sgjslw/2477578.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fa577***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com