數(shù)據(jù)挖掘在建筑企業(yè)營(yíng)運(yùn)資金管理中的應(yīng)用研究
本文關(guān)鍵詞: 數(shù)據(jù)挖掘 營(yíng)運(yùn)資金 應(yīng)用平臺(tái) 決策樹 C4.5算法 出處:《湖南大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著信息技術(shù)的快速發(fā)展,為了實(shí)現(xiàn)數(shù)據(jù)的錄入、查詢、統(tǒng)計(jì)等各項(xiàng)功能,提高工作效率,我國(guó)的大部分行業(yè)基本上都構(gòu)建了數(shù)以億計(jì)的數(shù)據(jù)庫(kù)。特別是建筑業(yè)市場(chǎng)競(jìng)爭(zhēng)的日益加劇,傳統(tǒng)的管理方法對(duì)現(xiàn)代化建筑企業(yè)的基本要求已經(jīng)越來(lái)越不適應(yīng),用更高的信息技術(shù)作為支撐是建筑工程管理的發(fā)展趨勢(shì)。建筑企業(yè)中營(yíng)運(yùn)資金的管理是很重要的,因?yàn)榻ㄖ髽I(yè)是典型的資金密集型行業(yè),投資大、回收期長(zhǎng)。隨著經(jīng)濟(jì)全球化的逐步深化,各企業(yè)必須加快對(duì)營(yíng)運(yùn)資金管理信息化的步伐。將數(shù)據(jù)挖掘技術(shù)應(yīng)用于建筑業(yè)的信息化建設(shè)中,,處理海量的管理數(shù)據(jù)和企業(yè)數(shù)據(jù),得到可用于市場(chǎng)監(jiān)管和企業(yè)管理的信息,為管理者決策提供一定支持,勢(shì)在必行。 本文通過(guò)全面收集數(shù)據(jù)挖掘、營(yíng)運(yùn)資金管理以及建筑企業(yè)信息化等文獻(xiàn)資料,并進(jìn)行述評(píng),為研究數(shù)據(jù)挖掘在建筑企業(yè)營(yíng)運(yùn)資金管理中的應(yīng)用研究奠定基礎(chǔ)。本文著眼于通過(guò)數(shù)據(jù)挖掘技術(shù)對(duì)實(shí)現(xiàn)建筑企業(yè)營(yíng)運(yùn)資金管理問(wèn)題進(jìn)行探討。本文首先對(duì)數(shù)據(jù)挖掘、分類算法以及營(yíng)運(yùn)資金的相關(guān)理論進(jìn)行了論述。接下來(lái)介紹了建筑企業(yè)營(yíng)運(yùn)資金數(shù)據(jù)挖掘模型與方法。其次本文構(gòu)建了數(shù)據(jù)挖掘營(yíng)運(yùn)資金應(yīng)用平臺(tái),文中論述了數(shù)據(jù)挖掘營(yíng)運(yùn)資金應(yīng)用平臺(tái)的三層體系結(jié)構(gòu),并對(duì)各層的主要功能進(jìn)行了詳細(xì)的闡述。在三層架構(gòu)的基礎(chǔ)之上,本文對(duì)數(shù)據(jù)挖掘營(yíng)運(yùn)資金應(yīng)用平臺(tái)構(gòu)建的具體實(shí)施過(guò)程及各層的功能設(shè)計(jì)進(jìn)行了深入的研究,并提出了從數(shù)據(jù)整理、清洗、商業(yè)邏輯模式定義、數(shù)據(jù)模型訓(xùn)練和結(jié)果展示等數(shù)據(jù)挖掘過(guò)程的具體實(shí)現(xiàn)方法。最后,本文通過(guò)數(shù)據(jù)挖掘營(yíng)運(yùn)資金應(yīng)用平臺(tái)在建筑企業(yè)中的具體應(yīng)用實(shí)施,使用C4.5決策樹算法生成決策樹,由決策樹產(chǎn)生分類規(guī)則。通過(guò)研究尋找其中有價(jià)值的關(guān)系和規(guī)律,對(duì)建筑企業(yè)的營(yíng)運(yùn)資金進(jìn)行分類、企業(yè)的監(jiān)督管理等實(shí)際工作能夠起到輔助作用,并且提供一定的決策支持。
[Abstract]:With the rapid development of information technology, in order to achieve data input, query, statistics and other functions, improve work efficiency. Most of the industries in our country have built hundreds of millions of databases, especially in the construction industry market competition is increasing, the traditional management methods to the basic requirements of modern construction enterprises have become more and more inadequate. Using higher information technology as the support is the development trend of construction engineering management. Working capital management in construction enterprises is very important because construction enterprises are typical capital-intensive industries with large investment. The payback period is long. With the deepening of economic globalization, enterprises must speed up the pace of informatization of working capital management, and apply data mining technology to the information construction of the construction industry. It is imperative to deal with a large amount of management data and enterprise data, to obtain information that can be used in market supervision and enterprise management, and to provide some support for managers to make decisions. In this paper, through the collection of data mining, working capital management and construction enterprise information and other documents, and review. In order to study the application and research of data mining in working capital management of construction enterprises, this paper focuses on the realization of working capital management of construction enterprises through data mining technology. Dig. Classification algorithm and working capital related theory are discussed. Then the construction enterprise working capital data mining model and method are introduced. Secondly, this paper constructs the application platform of data mining working capital. This paper discusses the three-tier architecture of data mining working capital application platform, and describes the main functions of each layer in detail. In this paper, the implementation process and the function design of each layer of data mining working capital application platform are studied deeply, and the definition of data collation, cleaning and business logic mode is put forward. Data model training and results display and other data mining process specific implementation methods. Finally, this paper through the data mining working capital application platform in construction enterprises to implement the specific application. C4.5 decision tree algorithm is used to generate decision tree, and decision tree is used to generate classification rules. By studying and finding the valuable relationship and law, the working capital of construction enterprise is classified. Supervision and management of enterprises and other practical work can play an auxiliary role, and provide certain decision support.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F275;F426.92;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 演克武;張磊;孫強(qiáng);;決策樹分類法中ID3算法在航空市場(chǎng)客戶價(jià)值細(xì)分中的應(yīng)用[J];商業(yè)研究;2008年03期
2 羅紅梅;;淺議建筑企業(yè)營(yíng)運(yùn)資金管理[J];財(cái)經(jīng)界(學(xué)術(shù)版);2009年05期
3 胡向陽(yáng);會(huì)計(jì)軟件的發(fā)展方向——會(huì)計(jì)決策支持系統(tǒng)[J];國(guó)際商務(wù)研究;1998年03期
4 向建紅;黃巧仙;;數(shù)據(jù)挖掘技術(shù)在財(cái)務(wù)分析中的應(yīng)用[J];湖北經(jīng)濟(jì)學(xué)院學(xué)報(bào)(人文社會(huì)科學(xué)版);2009年03期
5 戴悅,岳超源;會(huì)計(jì)DSS:決策支持系統(tǒng)在會(huì)計(jì)學(xué)中的應(yīng)用[J];華中理工大學(xué)學(xué)報(bào);1999年01期
6 梁榮華,史濟(jì)建;人工智能在財(cái)務(wù)決策支持系統(tǒng)中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2001年08期
7 程昌品;陳強(qiáng);;基于信息增益比的決策樹用于畢業(yè)生就業(yè)預(yù)測(cè)[J];計(jì)算機(jī)仿真;2010年02期
8 陳思洲;;試論反映營(yíng)運(yùn)資金使用效率的財(cái)務(wù)指標(biāo)[J];會(huì)計(jì)研究;1986年01期
9 毛付根;論營(yíng)運(yùn)資金管理的基本原理[J];會(huì)計(jì)研究;1995年01期
10 李良材,陳冀豫;財(cái)務(wù)決策支持系統(tǒng)研究[J];會(huì)計(jì)研究;1996年04期
本文編號(hào):1465450
本文鏈接:http://www.sikaile.net/kejilunwen/sgjslw/1465450.html