兩種典型城市雨水LID技術生命周期評價研究
本文關鍵詞:兩種典型城市雨水LID技術生命周期評價研究 出處:《北京建筑大學》2013年碩士論文 論文類型:學位論文
更多相關文章: 城市雨水LID技術 生命周期評價 環(huán)境影響評價 成本-效益分析
【摘要】:隨著城市化進程不斷推進,城市不透水面積逐年增加,地表徑流系數較開發(fā)前顯著增大,降雨時地表產匯流時間縮短,峰值流量增大,峰值時間提前,,給傳統城市雨水排水設施帶來了極大的壓力。基于此背景,低影響開發(fā)(Low Impact Development,LID)技術應運而生。 生命周期評價(Life CycleAssessment,LCA)是一種對全過程資源消耗和環(huán)境影響進行分析與評價的方法,經過半個多世紀的發(fā)展,LCA方法在國外已經日益成為政府和企業(yè)主要的環(huán)境管理工具。美國在實施了大量LID工程之后,已開始對已建LID設施進行全過程生命周期評價,而我國在這方面的研究還處于空白狀態(tài)。本論文進行了LCA方法學基本原理應用于LID措施的評價研究,以期通過評價結果,為決策者科學選擇LID措施提供支持。 本研究在LCA理論基礎上,首先構建了城市雨水LID技術LCA評價模式,然后利用該模式對兩種典型城市雨水LID技術進行了案例分析。 通過研究得出以下結論: (1)本文對LID技術生命周期評價方法進行了研究,構建了城市雨水LID技術生命周期評價模式,該模式主要包括兩部分——生命周期影響評價(Life Cycle ImpactAssessment,LCIA),主要指環(huán)境影響評價,與生命周期成本-效益分析(Life CycleCost-benefits Analysis,LCCA)。 (2)由兩種LID措施全過程生命周期污染物排放結果可知,雨水花園與滲透鋪裝+滲透管/井系統全過程生命周期排放量最大的污染物均為CO2,排放量分別為44899.44kg與260341.30kg。此外,滲透鋪裝+滲透管/井系統由于大量采用透水磚與透水混凝土等材料,造成的廢棄物填埋的質量為1617790.00kg。 (3)全過程生命周期雨水花園的CO2排放量僅占滲透鋪裝+滲透管/井系統的17.25%,環(huán)保優(yōu)勢較為明顯。 (4)全過程生命周期雨水花園COD減排量為滲透鋪裝+滲透管/井系統的505.09%,雨水花園TN減排量為滲透鋪裝+滲透管/井系統的34.55%,雨水花園TP減排量為滲透鋪裝+滲透管/井系統的129.87%。雨水花園的水體污染物減排效應較為顯著。 (5)本文將雨水花園與滲透鋪裝+滲透管井系統全過程生命周期成本-效益與傳統雨水排水系統進行對比分析,結果表明,就全過程生命周期成本而言,雨水花園>滲透鋪裝+滲透管/井系統>傳統雨水排水系統。考慮到全過程生命周期的經濟效益、環(huán)境效益與社會效益等綜合效益,雨水花園與滲透鋪裝+滲透管/井系統比傳統雨水排水系統具有明顯優(yōu)勢。 (6)就投資回收期而言,雨水花園的成本投資回收期為19.75-29.45年,滲透鋪裝+滲透管/井系統的成本投資回收期為14.49-18.28年。由于某些基礎數據無法獲取,可能會導致評價結果存在一定偏差。 (7)從環(huán)境影響的角度而言,雨水花園好于滲透鋪裝,從投資回收期而言,滲透鋪裝較好,最終選擇哪一種LID措施,需根據當地實際情況再做決定。 (8)單獨某一項綠色基礎設施的實施并不能滿足所有環(huán)境效益、經濟效益及社會效益的綜合目標,在具體運用時,應根據實際情況,選擇某幾種綠色基礎設施進行組合運用,兼顧環(huán)境效益、經濟效益及社會效益,以期取得良好的綜合效益。
[Abstract]:Along with the continuous development of city urbanization, city water area increased year by year, the surface runoff coefficient is developed significantly increased rainfall, surface runoff time, peak flow rate increases, the peak time in advance, brings great pressure to the traditional city drainage facilities. Based on this background, low impact development (Low Impact Development, LID) technology came into being.
Life cycle assessment (Life CycleAssessment LCA) is a kind of method to analyze and evaluate the environmental impact and resource consumption in the whole process, after more than half a century of development, the LCA method in foreign countries has become the government and enterprises the main tool for environmental management. In the United States after the implementation of a large number of LID project, has started during the whole life cycle assessment has been built on the LID infrastructure, and our research in this area is still in the blank state. Evaluation of this paper the basic principle of LCA method applied to LID measures, through the evaluation results, the scientific selection of LID measures for decision makers to provide support.
Based on the LCA theory, we first built the LCA evaluation mode of urban rainwater LID technology. Then we used the model to analyze two typical urban rainwater LID technologies.
Through the study, the following conclusions are drawn.
(1) this paper studied the LID method of life cycle assessment, construction of city rainwater LID technology life cycle assessment model, this model mainly includes two parts: the life cycle impact assessment (Life Cycle, ImpactAssessment, LCIA), mainly refers to the environmental impact assessment, analysis and life cycle cost benefit (Life CycleCost-benefits Analysis, LCCA).
(2) the two LID measures the whole life cycle of the pollutant emission results, and infiltration of rainwater garden pavement + permeation tube / pollutants well system life cycle maximum emissions were CO2, 44899.44kg and 260341.30kg. emissions respectively. In addition, permeability pavement permeation tube wells / + system due to material uses a lot of water permeable brick with the pervious concrete, the quality of waste landfill caused by 1617790.00kg.
(3) the CO2 emission of the whole process life cycle rainwater garden is only 17.25% of the permeable paving + permeable pipe / well system, and the advantage of environmental protection is more obvious.
(4) the life cycle of rain garden COD emission reduction of the whole process of + 505.09% well penetration penetration pavement system / pipe, rainwater garden TN emission reduction for + 34.55% well penetration penetration pavement system / pipe, rainwater garden TP emission reduction for pavement permeability + permeation tube / water pollutant emission reduction effect wells system 129.87%. rain garden is more significant.
(5) the rain garden and well penetration pavement + infiltration system for the whole process of life cycle cost benefit and traditional drainage system were analyzed. The results show that in terms of life cycle cost, rain garden, pavement permeability + - permeable tube / well system, the traditional rainwater drainage system. Considering the life cycle of the whole process the comprehensive benefit of economic benefits, social benefits and environmental benefits, and infiltration of rainwater garden pavement + permeation tube / wells system than the traditional rainwater drainage system has obvious advantages.
(6) in terms of the investment recovery period, the cost recovery period of the rain garden is 19.75-29.45 years, and the cost recovery period of the permeable pavement + penetration pipe / well system is 14.49-18.28 years. Because some basic data can not be acquired, it may lead to a certain deviation in the evaluation result.
(7) from the point of view of environmental impact, rainwater garden is better than permeable pavement. In terms of investment recovery period, it is better to infiltrate pavement and choose which LID measure ultimately. We need to make decisions based on local actual conditions.
(8) a single green infrastructure implementation can not meet all environmental benefits, comprehensive goal of economic and social benefits, in the specific application, should be based on the actual situation, the use of combination of choice for certain types of green infrastructure, taking into account the environmental benefits, economic benefits and social benefits, achieve good comprehensive benefits by the time.
【學位授予單位】:北京建筑大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TU992;TV213.9
【參考文獻】
相關期刊論文 前10條
1 姜金龍,吳玉萍,馬軍,元麗華,徐金城;生命周期評價的技術框架及研究進展[J];蘭州理工大學學報;2005年04期
2 吳敏,楊健;普通生物濾池處理工藝的生命周期能耗分析[J];中國給水排水;2001年06期
3 張瓊華;王曉昌;;城市污水處理環(huán)境效益量化分析[J];環(huán)境工程學報;2009年05期
4 席德立,彭小燕;LCA環(huán)境影響分析新探[J];環(huán)境科學;1997年06期
5 曾忠忠;劉戀;;解析波特蘭雨水花園[J];華中建筑;2007年04期
6 向璐璐;李俊奇;鄺諾;車伍;李藝;劉旭東;;雨水花園設計方法探析[J];給水排水;2008年06期
7 陳士明,劉正乾;塑料與紙包裝材料的生命周期評價研究[J];南昌航空工業(yè)學院學報;2000年03期
8 李芳;張學敏;葛蘊珊;李洪文;王曉燕;;甲醇柴油與生物柴油常規(guī)污染物的對比研究[J];農機化研究;2009年07期
9 王壽兵,楊建新,胡聃;生命周期評價方法及其進展[J];上海環(huán)境科學;1998年11期
10 楊健,吳敏;3種活性污泥法處理工藝的生命周期能耗分析[J];上海環(huán)境科學;2001年12期
相關博士學位論文 前1條
1 谷立靜;基于生命周期評價的中國建筑行業(yè)環(huán)境影響研究[D];清華大學;2009年
相關碩士學位論文 前4條
1 劉艷艷;再生水生命周期綜合價值模型與量化[D];西安建筑科技大學;2011年
2 楊飛;建筑給水排水系統生命周期評價(LCA)方法研究[D];西安建筑科技大學;2008年
3 華莉芳;人工湖建設項目LCA理論與應用研究[D];西安建筑科技大學;2009年
4 高延雄;循環(huán)工業(yè)經濟園區(qū)水環(huán)境系統生命周期評價研究[D];西安建筑科技大學;2010年
本文編號:1397359
本文鏈接:http://www.sikaile.net/kejilunwen/sgjslw/1397359.html