天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

基于混合粒子濾波和稀疏表示的目標跟蹤算法

發(fā)布時間:2017-09-13 11:06

  本文關(guān)鍵詞:基于混合粒子濾波和稀疏表示的目標跟蹤算法


  更多相關(guān)文章: 粒子濾波 稀疏表示 目標跟蹤 局部空間信息 局部二元模式(LBP)


【摘要】:針對圖像序列中的運動目標在跟蹤過程中易受到光照等復(fù)雜環(huán)境、外觀變化及部分遮擋影響的問題,提出基于全局信息和局部信息的混合粒子濾波算法.將目標的局部二元模式紋理特征引入粒子濾波算法,通過稀疏編碼目標子塊,充分利用目標的局部空間信息,并結(jié)合全局信息以確定當(dāng)前幀中目標的位置.在跟蹤過程中實時更新模板,這在一定程度上提高算法的魯棒性.實驗表明在目標處于復(fù)雜環(huán)境中算法能達到較理想的跟蹤效果.
【作者單位】: 江南大學(xué)物聯(lián)網(wǎng)工程學(xué)院;
【關(guān)鍵詞】粒子濾波 稀疏表示 目標跟蹤 局部空間信息 局部二元模式(LBP)
【分類號】:TP391.41
【正文快照】: 目標跟蹤是機器視覺領(lǐng)域的一個重要研究內(nèi)容,目標跟蹤方法大致分為兩類:基于濾波和數(shù)據(jù)關(guān)聯(lián)的跟蹤方法、基于目標表示法和位置的跟蹤方法[1].第一類的典型算法為卡爾曼濾波[2],它在很多領(lǐng)域得到廣泛應(yīng)用.Vijay等[3]提出使用中值濾波和二值化檢測和提取移動目標,然后使用卡爾曼

【相似文獻】

中國期刊全文數(shù)據(jù)庫 前10條

1 李映;張艷寧;許星;;基于信號稀疏表示的形態(tài)成分分析:進展和展望[J];電子學(xué)報;2009年01期

2 趙瑞珍;王飛;羅阿理;張彥霞;;基于稀疏表示的譜線自動提取方法[J];光譜學(xué)與光譜分析;2009年07期

3 楊蜀秦;寧紀鋒;何東健;;基于稀疏表示的大米品種識別[J];農(nóng)業(yè)工程學(xué)報;2011年03期

4 史加榮;楊威;魏宗田;;基于非負稀疏表示的人臉識別[J];計算機工程與設(shè)計;2012年05期

5 高志榮;熊承義;笪邦友;;改進的基于殘差加權(quán)的稀疏表示人臉識別[J];中南民族大學(xué)學(xué)報(自然科學(xué)版);2012年03期

6 朱杰;楊萬扣;唐振民;;基于字典學(xué)習(xí)的核稀疏表示人臉識別方法[J];模式識別與人工智能;2012年05期

7 耿耀君;張軍英;袁細國;;一種基于稀疏表示系數(shù)的特征相關(guān)性測度[J];模式識別與人工智能;2013年01期

8 張疆勤;廖海斌;李原;;基于因子分析與稀疏表示的多姿態(tài)人臉識別[J];計算機工程與應(yīng)用;2013年05期

9 李正周;王會改;劉梅;丁浩;金鋼;;基于形態(tài)成分稀疏表示的紅外小弱目標檢測[J];彈箭與制導(dǎo)學(xué)報;2013年04期

10 胡正平;趙淑歡;李靜;;基于塊稀疏遞推殘差分析的稀疏表示遮擋魯棒識別算法研究[J];模式識別與人工智能;2014年01期

中國重要會議論文全文數(shù)據(jù)庫 前3條

1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識別研究[A];虛擬運營與云計算——第十八屆全國青年通信學(xué)術(shù)年會論文集(上冊)[C];2013年

2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標識別[A];2013年中國智能自動化學(xué)術(shù)會議論文集(第五分冊)[C];2013年

3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號處理及其研究進展[A];中國聲學(xué)學(xué)會水聲學(xué)分會2013年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2013年

中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條

1 李進明;基于稀疏表示的圖像超分辨率重建方法研究[D];重慶大學(xué);2015年

2 王亞寧;基于信號稀疏表示的電機故障診斷研究[D];河北工業(yè)大學(xué);2014年

3 姚明海;視頻異常事件檢測與認證方法研究[D];東北師范大學(xué);2015年

4 黃國華;蛋白質(zhì)翻譯后修飾位點與藥物適應(yīng)癥預(yù)測方法研究[D];上海大學(xué);2015年

5 王瑾;基于稀疏表示的數(shù)據(jù)收集、復(fù)原與壓縮研究[D];北京工業(yè)大學(xué);2015年

6 王文卿;基于融合框架與稀疏表示的遙感影像銳化[D];西安電子科技大學(xué);2015年

7 李小薪;稀疏表示的分段匹配尋蹤方法[D];華南理工大學(xué);2009年

8 何艷敏;稀疏表示在圖像壓縮和去噪中的應(yīng)用研究[D];電子科技大學(xué);2011年

9 宋相法;基于稀疏表示和集成學(xué)習(xí)的若干分類問題研究[D];西安電子科技大學(xué);2013年

10 匡金駿;基于稀疏表示的圖像分類與目標跟蹤研究[D];重慶大學(xué);2013年

中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條

1 王道文;基于稀疏表示的目標跟蹤算法研究[D];華南理工大學(xué);2015年

2 李哲;基于稀疏表示和LS-SVM的心電信號分類[D];河北大學(xué);2015年

3 孫雪青;Shearlet變換和稀疏表示相結(jié)合的甲狀腺結(jié)節(jié)圖像融合[D];河北大學(xué);2015年

4 吳麗璇;基于稀疏表示的微聚焦X射線圖像去噪方法[D];華南理工大學(xué);2015年

5 趙孝磊;基于圖像分塊稀疏表示的人臉識別算法研究[D];南京信息工程大學(xué);2015年

6 黃志明;基于辨別式稀疏字典學(xué)習(xí)的視覺追蹤算法研究[D];華南理工大學(xué);2015年

7 張鈴華;非約束環(huán)境下的稀疏表示人臉識別算法研究[D];南京信息工程大學(xué);2015年

8 賀妍斐;基于稀疏表示與自適應(yīng)倒易晶胞的遙感圖像復(fù)原方法研究[D];南京信息工程大學(xué);2015年

9 楊爍;電能質(zhì)量擾動信號的稀疏表示/壓縮采樣研究[D];西南交通大學(xué);2015年

10 應(yīng)艷麗;基于低秩稀疏表示的目標跟蹤算法研究[D];西南交通大學(xué);2015年

,

本文編號:843328

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/843328.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f5df8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com