基于車載視覺系統(tǒng)的目標(biāo)檢測優(yōu)化算法研究
[Abstract]:With the rapid development of China's social economy, the number of cars in our country increases greatly, but at the same time, the incidence of traffic accidents is also increasing gradually. Advanced driving Assistance system (ADAS) is one of the important means to solve the traffic safety problem, which has become an important research topic concerned by scholars. Target detection algorithm is one of the key technologies in the advanced driving assistant system. In recent years, valuable research results emerge one after another. Target detection algorithms such as Subcat,RCNN,Faster-RCNN,YOLO have a good performance in simple scenes. However, if these detection algorithms are applied to the actual traffic scene, there are still some limitations. In this paper, the practical application of the driving assistant system in complex traffic scene is studied, and the optimization scheme to improve the accuracy of the existing target detection algorithms is proposed. The main work of this paper is as follows: 1. Based on the principle of camera imaging, this paper puts forward a method to remove false detection by geometric constraint model. 2.2.Based on the principle of camera imaging, this paper proposes a method to remove false detection by geometric constraint model. In this paper, a continuous motion information fusion model based on conditional random field (CRF) is proposed to improve the performance of target detection algorithms. 3. The effectiveness of the proposed optimization algorithm for target detection is verified by comparison experiments. The experimental results show that the target detection optimization algorithm proposed in this paper is still reliable under different complex road conditions. The optimization algorithm proposed in this paper can be combined with a variety of existing target detection algorithms, which provides a new idea for target detection in complex traffic scenarios and advances the research and development process in the field of autopilot.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U463.6;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 本刊訊;;百度攜手寶馬開發(fā)無人駕駛車[J];中國公共安全;2014年19期
2 楊帆;;無人駕駛汽車的發(fā)展現(xiàn)狀和展望[J];上海汽車;2014年03期
3 馬鈞;曹靜;;基于中國市場特定需求的汽車先進(jìn)駕駛輔助系統(tǒng)發(fā)展趨勢研究[J];上海汽車;2012年04期
4 王牛;李祖樞;武德臣;于芳;;機(jī)器人單目視覺定位模型及其參數(shù)辨識[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2008年S1期
5 李政;劉大學(xué);賀漢根;;觸發(fā)式車輛實(shí)時檢測新算法[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2008年S1期
6 胡銦;楊靜宇;;基于模型的車輛檢測與跟蹤[J];中國圖象圖形學(xué)報;2008年03期
7 胡文;孫容磊;;基于序列圖像的視覺定位與運(yùn)動估計[J];傳感器與微系統(tǒng);2007年07期
8 王榮本,游峰,崔高健,郭烈;基于計算機(jī)視覺高速智能車輛的道路識別[J];計算機(jī)工程與應(yīng)用;2004年26期
9 徐友春,王榮本,李兵,李斌;世界智能車輛近況綜述[J];汽車工程;2001年05期
相關(guān)碩士學(xué)位論文 前1條
1 衡浩;復(fù)雜交通場景中基于路面提取的行人檢測研究[D];上海交通大學(xué);2013年
,本文編號:2450885
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2450885.html