面向Mashup多敏感屬性數(shù)據(jù)集的隱私保護(hù)方法研究
[Abstract]:Mashup is a widely concerned Web-based data integration application on Internet. As a common data aggregation application, Mashup provides strong support for data exchange and sharing. Data aggregation and publishing will involve multiple data publishing units, the connection between these data sources will often lead to serious privacy disclosure problems, but also very easy to generate sensitive information leakage between data publishing units. At the same time, the data aggregated from many data sources must contain a large number of attributes, which can easily result in over-distortion of data after anonymization of high-dimensional data. Privacy protection under data aggregation publishing is an important and challenging problem. PHD Mashup algorithm is proposed to solve the privacy protection problem in data aggregation publishing. It adopts LKC-Privacy protection model and combines top-down specialization method. The privacy protection of data aggregation and publishing is realized. However, many data providers are involved in the process of data aggregation, and the number of attributes that need to be anonymized must be huge. The PHDMashup algorithm requires the specialization of all effective nodes of the generalization tree constructed by all the attributes. It not only causes waste of time and space, but also brings heavy calculation. In this paper, the PHDMashup algorithm is improved and the NPHDMashup algorithm is proposed, which improves the efficiency of the algorithm by reducing the specialized nodes. In addition, an improved data aggregation privacy protection algorithm, SPHDMashup, which uses Server as a middleware, is proposed to solve the problem of time-consuming caused by a large amount of information exchange between data providers in the above two algorithms. The direct exchange of information between the data provider and Server not only improves the efficiency of the algorithm, but also reduces the workload of the data provider to a great extent. Moreover, the resources converged in Mashup mode have the characteristics of multi-source, heterogeneous and complex structure, and heterogeneous problems will affect the data processing of shared attributes among data providers. In this paper, a mapping table is proposed to realize the transformation from local data model to common model, so as to solve the problem of semantic heterogeneity in data aggregation. Finally, the proposed algorithm is evaluated by experiments, compared with the original algorithm, the superiority of the algorithm is verified, the shortcomings of the algorithm are analyzed, and the improvement direction of the algorithm in the future is discussed.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP309
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 馮登國;張敏;李昊;;大數(shù)據(jù)安全與隱私保護(hù)[J];計(jì)算機(jī)學(xué)報(bào);2014年01期
2 高永兵;吳紀(jì)磊;胡文江;魏曉東;;基于Web服務(wù)的Mashup應(yīng)用的研究與實(shí)現(xiàn)[J];計(jì)算機(jī)技術(shù)與發(fā)展;2010年06期
3 楊曉春;王斌;于戈;;支持信息共享的有效的安全數(shù)據(jù)發(fā)布算法[J];中國科學(xué)(F輯:信息科學(xué));2009年08期
4 李峰;李春旺;;Mashup關(guān)鍵技術(shù)研究[J];現(xiàn)代圖書情報(bào)技術(shù);2009年01期
5 符寧;周興社;詹濤;;信息集成數(shù)據(jù)模型研究[J];計(jì)算機(jī)應(yīng)用研究;2008年05期
6 楊曉春;王雅哲;王斌;于戈;;數(shù)據(jù)發(fā)布中面向多敏感屬性的隱私保護(hù)方法[J];計(jì)算機(jī)學(xué)報(bào);2008年04期
7 劉喻;呂大鵬;馮建華;周立柱;;數(shù)據(jù)發(fā)布中的匿名化技術(shù)研究綜述[J];計(jì)算機(jī)應(yīng)用;2007年10期
8 馬曉艷;曹寶香;;一種基于XML的數(shù)據(jù)集成方案及其關(guān)鍵技術(shù)[J];計(jì)算機(jī)與現(xiàn)代化;2006年03期
相關(guān)博士學(xué)位論文 前1條
1 王波;數(shù)據(jù)發(fā)布中的個(gè)性化隱私匿名技術(shù)研究[D];哈爾濱工程大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 孟凡峰;基于本體的戰(zhàn)場電磁環(huán)境組織模型設(shè)計(jì)與實(shí)現(xiàn)[D];國防科學(xué)技術(shù)大學(xué);2010年
2 曾子平;發(fā)布數(shù)據(jù)的隱私保護(hù)技術(shù)研究[D];重慶大學(xué);2009年
3 龍?jiān)兰t;地圖Mashup的研究與實(shí)現(xiàn)[D];中南大學(xué);2008年
4 黃春梅;微數(shù)據(jù)發(fā)布匿名技術(shù)研究[D];中南大學(xué);2008年
,本文編號(hào):2432712
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2432712.html