機制砂粒徑粒形檢測系統(tǒng)開發(fā)及實驗研究
[Abstract]:Asphalt mixture is the most used road construction material in the world at present. In terms of volume composition, fine aggregate in asphalt mixture accounts for 40% of the total volume. The huge market demand makes the natural sand resource decrease year by year. It is inevitable to replace the natural sand with machine-made sand. However, the particle size and grain shape of machine-made sand are not uniform in China, and the quality detection of machine-made sand is the key to ensure the quality of mixture. The traditional vibrating sieve method can only detect the particle size gradation of machine-made sand, and the image method can detect the particle size and shape at the same time. In this paper, the detection algorithm of machine-made sand with a particle size of 0.6 ~ 4.75 mm is studied and the corresponding detection system is developed. The mechanism sand vibration dispersion system is designed, and the falling sand image is collected by CCD camera. In order to reduce the influence of the surface color of the machined sand on the detection result, a non-shadow backlight light source system is designed, and the particle size of the machined sand is developed. Grain shape detection hardware system. Gao Si filter is used to denoise the grayscale image; the maximum inter-class variance method is used to segment the filtered image to obtain the binary image; the incomplete particles at the edge of the image are identified by the geometric characteristics of the particles and removed. The Hu moment feature is used to identify and eliminate the repeated shot particles in the adjacent images, and the conglutinated particles are separated by detecting the convex hull and the concave point of the particles. A new image calibration method is proposed. Based on Visual Studio C, Open CV library and Qt, a software system for particle shape detection of machine-made sand is developed. The reproducibility tests of particle size and particle shape were carried out for the single grade compound of machine-made sand with the particle size range of 0.6 ~ 4.75 mm, and the precision comparison test of the new QICPIC dynamic particle image analyzer was carried out. The experimental results show that the maximum repeatability error of particle size detection is 3.46% and 0.51% for single stage and grade proportioning, and 2.97% and 0.85% for particle shape detection. The more spherical the particle shape, the better the repeatability. Compared with the results of the particle size of neopateck, the maximum deviation of the single stage material and the grade batching is 7.19% and 6.02%, and the maximum deviation of the particle shape is 3.08% and 2.42% respectively. In view of the difference between the image method and the vibrating screen method, a particle size correction method is proposed. The precision of the modified particle size measurement can meet the needs of practical engineering measurement. Based on the flow time method for measuring fine aggregate shape and angularity in JTG E42-2005, the correlation between different particle shape characterization parameters and flow time was studied, by comparing with the flow time method in the National Standard "Highway Engineering aggregate Test Code" (JTG E42-2005). The equivalent ellipse long and short axis ratio is obtained as the optimal particle shape characterization parameter. The developed testing system can meet the requirements of particle size and particle shape laboratory testing, and can effectively monitor the quality of machined sand.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U414;TP391.41
【相似文獻】
相關期刊論文 前2條
1 邵士勇;黃印博;姚永幫;饒瑞中;;氣溶膠粒形光學測量技術的研究進展[J];大氣與環(huán)境光學學報;2008年01期
2 權龍哲;祝榮欣;馬小愚;;基于傅里葉描述的小麥籽粒三維粒形研究[J];東北農業(yè)大學學報;2008年06期
相關會議論文 前2條
1 張亞東;張穎慧;董少玲;陳濤;趙慶勇;朱鎮(zhèn);周麗慧;姚姝;趙春芳;于新駱;名瑞;王才林;;利用大粒材料定位水稻粒形性狀數(shù)量基因位點[A];現(xiàn)代分子植物育種與糧食安全研討會論文集[C];2011年
2 鄧華鳳;孫平勇;何強;張武漢;舒服;;水稻粒形遺傳及其QTL定位與克隆研究進展[A];中國作物學會50周年慶祝會暨2011年學術年會論文集[C];2011年
相關重要報紙文章 前1條
1 本報特約記者 省種子管理站 向子鈞 伍同寸 吳和明 等;怎樣用肉眼觀察種子的真?zhèn)危縖N];湖北科技報;2006年
相關博士學位論文 前6條
1 孫亮;水稻粒形主效QTL對粒重形成的遺傳貢獻和粒長基因GS3.2的圖位克隆[D];華中農業(yè)大學;2013年
2 王躍星;水稻粒形基因GL7的克隆、功能研究及育種利用[D];中國農業(yè)科學院;2015年
3 茆海亮;水稻粒形基因GS3的功能研究[D];華中農業(yè)大學;2010年
4 魯麗;水稻多效性基因Ghd7、粒形基因GW2、GS5、qSW5的進化及與性狀的關聯(lián)分析[D];華中農業(yè)大學;2013年
5 樓玨;稻米品質的分子遺傳剖析及輻射誘變群體中水稻粒形突變體的鑒定[D];華中農業(yè)大學;2009年
6 張曉軍;水稻粒長基因qGL3的定位克隆、功能分析及育種利用研究[D];南京農業(yè)大學;2012年
相關碩士學位論文 前10條
1 林澤鋒;水稻地方品種螃蟹谷的粒形遺傳分析與定位[D];南京農業(yè)大學;2014年
2 徐禮東;利用秈粳染色體片段置換系研究水稻粒形相關性狀的遺傳基礎[D];南京農業(yè)大學;2014年
3 葉乃忠;水稻粒形基因GS2.2的精細定位[D];湖南農業(yè)大學;2016年
4 高志強;水稻遺傳圖譜構建及粒形和粒重QTL定位[D];中國農業(yè)科學院;2011年
5 文覓;水稻粒形QTL的定位及休眠候選基因的鑒定[D];華中農業(yè)大學;2013年
6 王松鳳;水稻粒形相關性狀及千粒重QTL表達穩(wěn)定性分析[D];南京農業(yè)大學;2007年
7 李龍;水稻籽粒腹切的QTL分析和一個粒形基因的精細定位[D];中國農業(yè)科學院;2012年
8 陸燕;小麥粒形突變體基因的遺傳分析及作圖[D];中國農業(yè)科學院;2013年
9 周海慶;水稻粒形及千粒重的遺傳研究[D];延邊大學;2014年
10 劉曉芬;大豆栽培品種群體粒形性狀及百粒重的關聯(lián)分析[D];南京農業(yè)大學;2010年
,本文編號:2429769
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2429769.html