基于TDMA數(shù)據(jù)鏈的文本分類系統(tǒng)研究與應用
[Abstract]:Wireless equipment is widely used in various fields because of its simple operation, easy to carry, convenient exchange of information and so on. It is an indispensable means of communication for the military. Therefore, wireless equipment is a common command and liaison tool in both military war and disaster relief. In order to transmit data between wireless devices more quickly and reliably, we construct a wireless network system based on TDMA (Time Division Multiple Access, (time Division multiple access) data link. The research content of this paper mainly includes the protocol design and implementation between the service platform and wireless platform, and the research and implementation of the Chinese text classification system on the service platform. The details are as follows: 1) in the wireless network system based on TDMA data link, each type of terminal includes wireless platform and service platform. The wireless platform completes the transmission of terminal information, and the business platform is responsible for processing files and locating information. The management and transmission of audio and video services, in order to ensure the reliable transmission of each service, we designed SWIP (Service Wireless Interface Protocol) protocol. 2) in order to filter and classify the transmission content, The Chinese text classification system needs to be installed on the business platform. Firstly, the Chinese text classification system is introduced, and various modules in the system, such as text preprocessing, feature dimensionality reduction, text representation, classification algorithm and so on, are described in detail. A new Chinese text classification system is proposed, in which the LDA (Latent Dirichlet Allocation) topic model is used to represent the text and the support vector machine (Support Vector Machines, is used to represent the text. SVM) and K-nearest neighbor algorithm (K-nearest neighbor classification) combined with the algorithm KSVM to classify. In order to analyze the performance of the proposed Chinese text classification system, the evaluation criteria such as accuracy, recall rate, F1-measure and so on need to be calculated experimentally. This paper presents two comparative experiments: the analysis of classification effect based on different classification algorithms based on LDA subject model and the analysis of KSVM classification effect based on different text models. By analyzing the experimental data, we can see that the Chinese text classification system based on LDA topic model and KSVM classification algorithm can achieve better classification effect.
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TN919.2;TP391.1
【參考文獻】
相關期刊論文 前10條
1 陳亮;龔儉;;基于卡方統(tǒng)計的應用協(xié)議流量行為特征分析方法[J];軟件學報;2010年11期
2 黃秀麗;王蔚;;一種改進的文本分類特征選擇方法[J];計算機工程與應用;2009年36期
3 孫鐵利;劉延吉;;中文分詞技術的研究現(xiàn)狀與困難[J];信息技術;2009年07期
4 龍樹全;趙正文;唐華;;中文分詞算法概述[J];電腦知識與技術;2009年10期
5 鄒加棋;陳國龍;郭文忠;;基于圖模型的中文文檔分類研究[J];小型微型計算機系統(tǒng);2006年04期
6 申紅;呂寶糧;內(nèi)山將夫;井佐原均;;文本分類的特征提取方法比較與改進[J];計算機仿真;2006年03期
7 周昭濤,卜東波,程學旗;文本的圖表示初探[J];中文信息學報;2005年02期
8 李蓉 ,葉世偉 ,史忠植;SVM-KNN分類器——一種提高SVM分類精度的新方法[J];電子學報;2002年05期
9 揭春雨,劉源,梁南元;漢語自動分詞實用系統(tǒng)CASS的設計和實現(xiàn)[J];中文信息學報;1991年04期
10 徐輝,何克抗,孫波;書面漢語自動分詞專家系統(tǒng)的實現(xiàn)[J];中文信息學報;1991年03期
相關博士學位論文 前1條
1 尚文倩;文本分類及其相關技術研究[D];北京交通大學;2007年
相關碩士學位論文 前3條
1 王國才;樸素貝葉斯分類器的研究與應用[D];重慶交通大學;2010年
2 曹衛(wèi)峰;中文分詞關鍵技術研究[D];南京理工大學;2009年
3 黃志剛;基于貝葉斯的中文垃圾郵件過濾系統(tǒng)的設計與實現(xiàn)[D];電子科技大學;2007年
,本文編號:2421104
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2421104.html