智能閱卷系統(tǒng)中圖像處理相關(guān)技術(shù)研究
[Abstract]:Compared with the traditional manual marking, the result of online marking is more accurate, the marking efficiency is higher, the marking process is more secure and has great advantages. The online marking system was put forward in the 1990s. After decades of development, it has been widely used in large-scale examinations. However, most of the small and medium-sized examinations still use manual marking method, and in large scale examination, it still needs the help of the cursor reader. The cost is very high, the maintenance is difficult in the later period, and the separation mode of the item card is relied on. However, in the mode of integration of question and card, the paper must be analyzed by using the complex template with all the subject information, which takes up a lot of resources and prolongs the marking period. In addition, test paper image segmentation is mostly fixed area segmentation, not according to the actual answer area of candidates for intelligent segmentation. Based on the above problems, this paper presents an intelligent marking system based on different card patterns, which uses different algorithms to correct the test papers, and uses a simplified template to locate the test paper. The intelligent recognition of test paper information is optimized and the system efficiency is greatly improved. The main contents are as follows: (1) two skew correction algorithms based on different problem card modes are proposed. First, a new algorithm is proposed for the answer card with synchronous head in the large scale examination, which can get the angle of the image of the test paper accurately. The second is to meet more requirements of test paper form and improve the efficiency of algorithm for the answer card without any synchronous information in the small and medium-sized examination. (2) this paper proposes the use of XML template for rough positioning. The steps of parsing XML files with DOM are saved and the system burden is lightened. (3) One-dimensional code is introduced to carry the examinee information and the one-dimensional code image is recognized. Traditional examinees need to fill in personal information manually, and character recognition is easy to make mistakes. This paper introduces one-dimensional bar code to record examinee information and realize location recognition of one-dimensional code image, which simplifies the process of identifying candidate information. The efficiency and accuracy of recognition are improved. (4) the objective problem recognition and segmentation algorithm is optimized. The objective questions are divided twice, and the threshold value obtained by OTSU method is used as a reference. After comparison, the candidates' options are obtained. It resolves the defect that the objective questions in many previous marking systems are segmented and unrecognized. (5) A new subjective problem recognition algorithm is proposed. The horizontal projection method, which combines the vertical corrosion operation, is put forward in the subjective examination paper, which realizes a more intelligent algorithm of dividing the test questions according to the examinee's answer area. The results of experiments and data analysis show that the algorithm can effectively solve the problems left over in the marking system, and the design of the system is more flexible. An appropriate skew correction algorithm can be selected according to the test paper type and the performance of the algorithm is improved. This paper optimizes the algorithm of paper information recognition and segmentation, and further intelligentizes the marking process.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:G434;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭文良;;視窗傾斜校正技術(shù)在文獻(xiàn)數(shù)字化轉(zhuǎn)換中的應(yīng)用[J];科技信息;2009年23期
2 張興會,劉玲,杜升之,陳增強(qiáng),袁著祉;車牌照定位及傾斜校正方法研究[J];系統(tǒng)工程與電子技術(shù);2004年02期
3 婁正良,劉昌平;一種快速高效的去除剪切、旋轉(zhuǎn)傾斜的方法[J];計算機(jī)工程與應(yīng)用;2004年34期
4 楊有;李曉虹;;基于線結(jié)構(gòu)分析的檔案圖像傾斜校正[J];計算機(jī)科學(xué);2007年01期
5 潘梅森;郭國強(qiáng);;基于圖像矩的車牌號碼傾斜校正[J];計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報;2007年08期
6 潘梅森;肖政宏;;一種新的車牌號碼傾斜校正方法[J];光電子.激光;2008年08期
7 馬帥營;;基于回歸分析的基因芯片圖像傾斜校正方法[J];大連民族學(xué)院學(xué)報;2010年01期
8 陳波;王加俊;吳陳;;基于頁面前景和最小二乘法的傾斜校正[J];計算機(jī)工程;2007年15期
9 唐群群;哈力木拉提·買買提;艾爾肯·賽甫丁;;維吾爾文掃描頁的傾斜校正[J];計算機(jī)應(yīng)用研究;2013年05期
10 江建軍;廖愛姣;吳文光;;一個改進(jìn)的車牌號碼傾斜校正方法[J];湖南文理學(xué)院學(xué)報(自然科學(xué)版);2012年04期
相關(guān)會議論文 前3條
1 羅月童;朱曉強(qiáng);劉曉平;;基于三點(diǎn)的航拍圖像傾斜校正方法及其應(yīng)用[A];中國儀器儀表學(xué)會第九屆青年學(xué)術(shù)會議論文集[C];2007年
2 楊立剛;張興會;李蘭友;;車牌照字符傾斜校正方法的研究[A];第二屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2004年
3 王四平;朱薇薇;劉志文;;一種新的斜體印刷字傾斜角度檢測算法[A];全國第一屆信號處理學(xué)術(shù)會議暨中國高科技產(chǎn)業(yè)化研究會信號處理分會籌備工作委員會第三次工作會議?痆C];2007年
相關(guān)重要報紙文章 前5條
1 董教素;“電桿傾斜校正器”獲國家專利[N];科技日報;2012年
2 龍哥;攢出自己想要的電腦[N];中國計算機(jī)報;2004年
3 龍哥;軟件應(yīng)用問答[N];中國計算機(jī)報;2005年
4 龍哥;軟件應(yīng)用問答。ǘN];中國計算機(jī)報;2004年
5 Vicen;提高文本識別率“三板斧”[N];電腦報;2004年
相關(guān)博士學(xué)位論文 前2條
1 王沖沖;自適應(yīng)光學(xué)系統(tǒng)傾斜校正技術(shù)研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2016年
2 潘梅森;醫(yī)學(xué)圖像傾斜校正方法與應(yīng)用研究[D];中南大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 擺雪剛;脫機(jī)手寫維吾爾文本行傾斜校正技術(shù)研究[D];新疆大學(xué);2015年
2 王劍;基于輪廓的維吾爾文單詞識別研究[D];新疆大學(xué);2015年
3 張曉宇;降水自記紙數(shù)字化算法研究[D];東北大學(xué);2011年
4 趙千;四川盆地早白堊世紅層磁傾角偏低問題研究[D];西北大學(xué);2016年
5 郭曉芳;基于小波變換的網(wǎng)上閱卷圖像傾斜校正方法[D];鄭州大學(xué);2013年
6 許雅卓;基于識別反饋的文檔圖像傾斜校正的研究和應(yīng)用[D];北方工業(yè)大學(xué);2011年
7 蔣海波;掃描圖像的傾斜校正、分割與壓縮[D];山東大學(xué);2012年
8 宋賢媛;快速響應(yīng)碼識別技術(shù)的研究[D];暨南大學(xué);2015年
9 凌文彪;車牌傾斜校正及字符識別算法的研究[D];廣西大學(xué);2014年
10 貢麗霞;車牌識別系統(tǒng)中的牌照定位及傾斜校正技術(shù)研究[D];中北大學(xué);2010年
,本文編號:2412944
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2412944.html