基于SIFT特征的圖像配準與拼接技術研究
[Abstract]:Image mosaic and fusion technology is a hot research point in the field of image processing and computer vision. In recent years, it has been widely used in national defense security, robot vision, video surveillance, panoramic image generation, medical image processing, remote sensing. Underwater exploration, video compression and retrieval, 3D virtual scene construction and other important areas. Among them, the registration rate, the time consuming and the quality of image fusion are all indicators to evaluate the quality of a stitching method. The feature-based image stitching and fusion method is highly praised by researchers because of its high registration quality and is not easy to be affected by the change of scale and other factors. In this paper, based on the existing feature-based image registration and stitching techniques, each step of image registration and stitching fusion is refined and improved, and good registration and stitching results are obtained. The main work is as follows: (1) the advantages and disadvantages of various lens distortion correction algorithms are analyzed and compared. According to the actual demand, the camera parameters are calibrated and corrected by using Zhang Zhengyou calibration method or Ilya Krylov model. (2) various image enhancement preprocessing methods are studied, and an image pyramid enhancement algorithm is proposed. The image registration rate is improved, and the average registration rate increases by 14.3% under the condition of poor illumination. (3) the image registration based on SIFT algorithm is studied, and the descriptor of SIFT feature is improved. The average speed of image registration is increased by 2 times. (4) the image fusion methods are analyzed and compared, and the original weighted average method is improved to improve the visual effect of the fusion results. Experimental results show that the proposed method can be effectively used in image mosaic and video mosaic in various fields.
【學位授予單位】:南京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關期刊論文 前10條
1 盧官明;陳浩;肖魯寧;蘇昊;鐘銳;;全景視圖泊車輔助系統(tǒng)中的多視點視頻拼接[J];南京郵電大學學報(自然科學版);2016年03期
2 徐燕麗;;一種魚眼鏡頭畸變圖像實時校正算法[J];信息通信;2016年06期
3 劉向南;馬純永;陳璐;陳戈;;基于三維場景出圖的拼接制作2.5維地圖算法[J];計算機應用;2015年S1期
4 魏利勝;周圣文;張平改;孫駟洲;;基于雙經度模型的魚眼圖像畸變矯正方法[J];儀器儀表學報;2015年02期
5 陳曉;唐詩華;;基于Matlab的圖像融合方法及性能評價[J];地理空間信息;2014年06期
6 肖進勝;饒?zhí)煊?賈茜;宋金鐘;易本順;;基于圖切割的拉普拉斯金字塔圖像融合算法[J];光電子.激光;2014年07期
7 姜柏軍;鐘明霞;;改進的直方圖均衡化算法在圖像增強中的應用[J];激光與紅外;2014年06期
8 戴霞;李輝;楊紅雨;張軍;;基于虛擬圖像金字塔序列融合的快速圖像增強算法[J];計算機學報;2014年03期
9 趙娟;孫澎濤;吳粉俠;馮延琴;;基于像素級的圖像融合[J];長春工程學院學報(自然科學版);2011年02期
10 張恒,雷志輝,丁曉華;一種改進的中值濾波算法[J];中國圖象圖形學報;2004年04期
相關碩士學位論文 前3條
1 桂輝;安防監(jiān)控中多相機圖像拼接相關問題的研究[D];浙江工業(yè)大學;2015年
2 楊瑞陽;基于SURF算法的醫(yī)學顯微圖像拼接研究[D];蘭州大學;2014年
3 趙彬;基于壓縮域的視頻配準[D];山東大學;2008年
,本文編號:2392161
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2392161.html