基于非結(jié)構(gòu)化文檔的開放域自動(dòng)問(wèn)答系統(tǒng)技術(shù)研究
[Abstract]:The automatic question answering system can return the exact answer directly according to the user input natural language question. The research direction of this paper is an open domain automatic question answering system based on unstructured documents. Its characteristic is that the data source behind it is an unstructured document library, and the problem oriented is a general problem, which is not limited to a certain field. A typical open domain question answering system based on unstructured documents is generally composed of three parts: question processing module, document processing module and answer processing module. There are two main problems in the system. The first is that the size of the paragraph candidate set returned by the document processing module is too large to reduce the accuracy of the answer processing module. The second is that the rule-based answer extraction is too cumbersome and inflexible. For the first question, this paper uses sentence filter and sentence sorting module to reduce the candidate set of paragraphs to a single answer sentence. To solve the second problem, the end-to-end depth neural network model is used to replace the traditional rule-based answer extraction algorithm. For sentence filtering module, this paper improves a document similarity algorithm, Word Mover's Distance (WMD), and proposes a hybrid model combining BM25 and WMD. The experiments of document classification and text sorting are carried out in this paper. Experimental results show that the improved WMD algorithm and the hybrid model are more effective than other benchmark algorithms. For sentence sorting module, this paper designs five features to measure the correlation between question sentence and candidate answer sentence, and sorts the candidate answer sentence with this correlation score. These features include different levels. This model is called Multiple Level Feature Rank (MLFR) model. This paper tests and compares some sentence ordering models based on depth neural network. The experimental results show that the MLFR model has better sorting effect. Finally, this paper introduces an end-to-end deep neural network model for answer extraction, and combines the model with the previous sentence filter and sentence sorting modules, and designs the experiment to evaluate the overall performance of the model. In this paper, we propose a solution to the problems in a typical open domain automatic question answering system based on unstructured documents, and improve the algorithm of calculating document similarity. In this paper, a sentence sorting model based on multilevel features, (MLFR), is proposed, and an end-to-end depth neural network is introduced to extract the answers. The experimental results show that the solution is effective.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭實(shí)福,劉挺,秦兵,李生;自動(dòng)問(wèn)答綜述[J];中文信息學(xué)報(bào);2002年06期
2 蘇芳仲;林世平;;基于事例推理的中文自動(dòng)問(wèn)答系統(tǒng)研究[J];福建電腦;2006年06期
3 劉里;曾慶田;;自動(dòng)問(wèn)答系統(tǒng)研究綜述[J];山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
4 孔令玉;;國(guó)外跨語(yǔ)言自動(dòng)問(wèn)答系統(tǒng)研究綜述[J];現(xiàn)代情報(bào);2008年10期
5 王婧;;基于自動(dòng)問(wèn)答技術(shù)的智能文本機(jī)器人[J];科技創(chuàng)業(yè)家;2013年08期
6 盧炳衛(wèi);;關(guān)于自動(dòng)問(wèn)答技術(shù)的研究[J];農(nóng)業(yè)圖書情報(bào)學(xué)刊;2006年01期
7 夏凌;魏祖雪;;自動(dòng)問(wèn)答系統(tǒng)及其評(píng)測(cè)(英文)[J];西華大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
8 黃建崗;張愛(ài)華;;教務(wù)門戶網(wǎng)自動(dòng)問(wèn)答系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];電腦知識(shí)與技術(shù);2009年36期
9 駱正華,樊孝忠,夏天;基于結(jié)構(gòu)化問(wèn)句實(shí)例的自動(dòng)問(wèn)答系統(tǒng)[J];微電子學(xué)與計(jì)算機(jī);2005年07期
10 李照亮;張琳;;基于招生領(lǐng)域自動(dòng)問(wèn)答系統(tǒng)的問(wèn)題理解的研究[J];電腦知識(shí)與技術(shù);2009年10期
相關(guān)會(huì)議論文 前3條
1 高俊杰;李茹;李雙紅;;基于領(lǐng)域本體的自動(dòng)問(wèn)答系統(tǒng)關(guān)鍵技術(shù)研究[A];中國(guó)計(jì)算機(jī)語(yǔ)言學(xué)研究前沿進(jìn)展(2007-2009)[C];2009年
2 張耀允;王曉龍;王軒;徐睿峰;侯永帥;范士喜;;面向開放的限定領(lǐng)域的交互式問(wèn)答語(yǔ)料分析[A];中國(guó)計(jì)算語(yǔ)言學(xué)研究前沿進(jìn)展(2009-2011)[C];2011年
3 劉國(guó)剛;;人工智能客戶服務(wù)體系的研究與實(shí)現(xiàn)[A];2008年中國(guó)通信學(xué)會(huì)無(wú)線及移動(dòng)通信委員會(huì)學(xué)術(shù)年會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 于士濤;基于問(wèn)答網(wǎng)絡(luò)論壇知識(shí)體系的自動(dòng)問(wèn)答系統(tǒng)研究[D];南開大學(xué);2009年
2 胡國(guó)平;基于超大規(guī)模問(wèn)答對(duì)庫(kù)和語(yǔ)音界面的非受限領(lǐng)域自動(dòng)問(wèn)答系統(tǒng)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 吳安峻;面向自動(dòng)問(wèn)答的短問(wèn)題分類研究[D];西南交通大學(xué);2015年
2 王正華;自動(dòng)問(wèn)答系統(tǒng)的研究與實(shí)現(xiàn)[D];西南科技大學(xué);2015年
3 舒德華;基于Scrapy爬取電商平臺(tái)數(shù)據(jù)及自動(dòng)問(wèn)答系統(tǒng)的構(gòu)建[D];華中師范大學(xué);2016年
4 趙潔;基于搜索引擎的中文自動(dòng)問(wèn)答系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京工業(yè)大學(xué);2016年
5 魏婷婷;政務(wù)通統(tǒng)一互動(dòng)平臺(tái)設(shè)計(jì)與實(shí)現(xiàn)[D];江西農(nóng)業(yè)大學(xué);2016年
6 趙龍;英文自動(dòng)問(wèn)答系統(tǒng)中數(shù)值型問(wèn)句的理解研究[D];大連海事大學(xué);2016年
7 蔡亞林;自動(dòng)問(wèn)答系統(tǒng)中數(shù)值型答案整合研究[D];大連海事大學(xué);2016年
8 溫思琦;基于本體的中醫(yī)冠心病自動(dòng)問(wèn)答系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];沈陽(yáng)工業(yè)大學(xué);2017年
9 徐燦;基于非結(jié)構(gòu)化文檔的開放域自動(dòng)問(wèn)答系統(tǒng)技術(shù)研究[D];浙江大學(xué);2017年
10 王振佶;面向銷售服務(wù)的自動(dòng)問(wèn)答系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2011年
,本文編號(hào):2380242
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2380242.html