圖標形狀復(fù)雜度的計算度量
發(fā)布時間:2018-12-13 08:43
【摘要】:為了解決二維圖標形狀視覺復(fù)雜度的計算度量問題,提出一個基于回歸模型的圖標形狀復(fù)雜度計算模型.首先對圖標訓(xùn)練數(shù)據(jù)集進行測試者心理評估;然后對該數(shù)據(jù)集進行幾何特征抽取,并計算得到候選特征變量;最后通過回歸分析從候選特征變量中選出4個變量構(gòu)建回歸模型來量化評估圖標復(fù)雜度.用圖標測試數(shù)據(jù)集對該回歸模型進行驗證的結(jié)果表明,該模型可以解釋80%的復(fù)雜度人工評估結(jié)果;測試數(shù)據(jù)集的模型量化評估結(jié)果和人工評估結(jié)果之間斯皮爾曼相關(guān)系數(shù)達0.922(最大值為1).該模型在圖標形狀分析、檢索、分類等方面具有廣泛應(yīng)用價值.
[Abstract]:In order to solve the problem of calculating the visual complexity of two-dimensional icon shape, a model for calculating the complexity of icon shape based on regression model is proposed. Firstly, the mental evaluation of the icon training data set is carried out, and then the geometric feature extraction is carried out, and the candidate feature variables are calculated. Finally, four variables are selected from the candidate feature variables by regression analysis to construct a regression model to quantitatively evaluate the complexity of icons. The results of verification of the regression model with icon test data set show that the model can explain 80% of the complexity of manual evaluation results. The Spelman correlation coefficient between the quantitative evaluation results of the model and the manual evaluation results of the test data set is 0.922 (the maximum value is 1). The model is widely used in icon shape analysis, retrieval, classification and so on.
【作者單位】: 浙江大學(xué)CAD&CG國家重點實驗室;浙江大學(xué)計算機科學(xué)與技術(shù)學(xué)院;浙江大學(xué)教育學(xué)院心理系;
【基金】:國家自然科學(xué)基金(61772463,61379069) 國家科技支撐計劃(2014BAK09B04) 國家社科基金重大項目(12&ZD231)
【分類號】:TP391.41
本文編號:2376262
[Abstract]:In order to solve the problem of calculating the visual complexity of two-dimensional icon shape, a model for calculating the complexity of icon shape based on regression model is proposed. Firstly, the mental evaluation of the icon training data set is carried out, and then the geometric feature extraction is carried out, and the candidate feature variables are calculated. Finally, four variables are selected from the candidate feature variables by regression analysis to construct a regression model to quantitatively evaluate the complexity of icons. The results of verification of the regression model with icon test data set show that the model can explain 80% of the complexity of manual evaluation results. The Spelman correlation coefficient between the quantitative evaluation results of the model and the manual evaluation results of the test data set is 0.922 (the maximum value is 1). The model is widely used in icon shape analysis, retrieval, classification and so on.
【作者單位】: 浙江大學(xué)CAD&CG國家重點實驗室;浙江大學(xué)計算機科學(xué)與技術(shù)學(xué)院;浙江大學(xué)教育學(xué)院心理系;
【基金】:國家自然科學(xué)基金(61772463,61379069) 國家科技支撐計劃(2014BAK09B04) 國家社科基金重大項目(12&ZD231)
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前4條
1 黃小蘭;;比較幾種挑選“最優(yōu)”回歸模型的指標[J];中國衛(wèi)生統(tǒng)計;1988年04期
2 李君;;基于路徑的多元標準回歸模型及其應(yīng)用[J];湛江師范學(xué)院學(xué)報;2006年06期
3 韓立強,姜興序;機床主軸結(jié)構(gòu)回歸模型近似重分析優(yōu)化設(shè)計[J];吉林工學(xué)院學(xué)報;1990年04期
4 李海濤;;重回歸模型在軟件開發(fā)預(yù)估工作量中的應(yīng)用[J];電腦與電信;2011年03期
相關(guān)碩士學(xué)位論文 前2條
1 鄧健康;基于級聯(lián)回歸模型的人臉配準研究[D];南京信息工程大學(xué);2015年
2 李昊鑫;三維手姿態(tài)建模及其交互系統(tǒng)研究[D];電子科技大學(xué);2016年
,本文編號:2376262
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2376262.html
最近更新
教材專著