基于Android和云平臺(tái)的日常血壓監(jiān)控預(yù)警系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
[Abstract]:In recent years, with the accelerated development of aging in China, the incidence of hypertension is increasing. Hypertension is the inducing factor of many diseases. It is very important to collect and analyze the data of physical signs of hypertension patients for the prevention of hypertension and its complications. How to collect and store the data of patients' physical signs, and how to analyze and predict the trend of patients' blood pressure according to the data, and so on, should be dealt with and solved urgently. The rapid development of cloud computing, the Internet of things and the Internet of things, the rapid coverage of 4G and wireless networks, and the rapid spread of Android and wearable smart devices all provide a convenient solution to these problems. The blood pressure data acquisition system based on Android solves the above problems from three levels: data acquisition, analysis and early warning, data acquisition, data storage and data analysis. The system realizes timely and accurate data collection, smooth transmission channel, fast and effective analysis and early warning, and easy to use. This paper focuses on data acquisition, data storage and data algorithm. In the aspect of data acquisition, the protocol of bluetooth sphygmomanometer is analyzed. The heterogeneous Bluetooth data acquisition system is designed based on Android platform, which supports the analysis of various Bluetooth protocols. A protocol resolution scheme which is easy to add Bluetooth device is designed by using policy mode. In the aspect of data storage, the Android terminal uploads the data to the cloud platform through the network, designs the scheme of establishing the blood pressure storage database cluster with MongoDB, and realizes the lateral expansion of the server resources. In terms of data algorithm, according to the characteristics of hypertension data, the time series prediction method is applied to the prediction of blood pressure data. The prediction scheme and model are designed by using vector autoregressive algorithm, and the prediction results are more accurate. Finally, the design and implementation of the functional interface of the system is completed, and the visualization of historical records and warning information is realized. In this paper, Android, Bluetooth and cloud platform are combined to realize blood pressure data acquisition, storage and analysis. The acquisition system supports a variety of heterogeneous Bluetooth devices, and the storage system is highly scalable, and the early warning system can better analyze the disease risk of patients. The realization of this system has certain reference significance for the collection and analysis of medical big data.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP277;TP393.09;TP316
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳偉偉;高潤(rùn)霖;劉力生;朱曼璐;王文;王擁軍;吳兆蘇;李惠君;鄭哲;蔣立新;胡盛壽;;《中國(guó)心血管病報(bào)告2014》概要[J];中國(guó)循環(huán)雜志;2015年07期
2 顏延;秦興彬;樊建平;王磊;;醫(yī)療健康大數(shù)據(jù)研究綜述[J];科研信息化技術(shù)與應(yīng)用;2014年06期
3 張松;田林亞;;時(shí)間序列分析在地鐵沉降監(jiān)測(cè)中的應(yīng)用[J];測(cè)繪工程;2014年10期
4 周煒;;云環(huán)境下提升MongoDB自動(dòng)分片性能研究[J];科技創(chuàng)新導(dǎo)報(bào);2013年29期
5 鄧志飛;應(yīng)良佳;王軍威;;基于IODA算法MongoDB負(fù)載均衡的改進(jìn)[J];現(xiàn)代電信科技;2013年07期
6 馬亮亮;;基于PCA-ARIMA模型的高血壓發(fā)病率預(yù)測(cè)[J];河北北方學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年02期
7 徐金茍;;低能耗藍(lán)牙4.0協(xié)議原理與實(shí)現(xiàn)方法[J];微型電腦應(yīng)用;2012年10期
8 劉璐;薛秀芹;羅先露;金凡;孫俊;;無(wú)線體域網(wǎng)的體系結(jié)構(gòu)及面臨的挑戰(zhàn)[J];電腦知識(shí)與技術(shù);2012年29期
9 袁鋒;陳守強(qiáng);;高效挖掘高血壓醫(yī)案關(guān)聯(lián)規(guī)則的模型構(gòu)建[J];計(jì)算機(jī)工程與應(yīng)用;2011年36期
10 呂明育;李小勇;;NoSQL數(shù)據(jù)庫(kù)與關(guān)系數(shù)據(jù)庫(kù)的比較分析[J];微型電腦應(yīng)用;2011年10期
相關(guān)碩士學(xué)位論文 前5條
1 楊澤軍;基于Android平臺(tái)的健康感知信息采傳系統(tǒng)研究與實(shí)現(xiàn)[D];山東師范大學(xué);2013年
2 沈姝;NoSQL數(shù)據(jù)庫(kù)技術(shù)及其應(yīng)用研究[D];南京信息工程大學(xué);2012年
3 劉順;基于WeHealth的物聯(lián)網(wǎng)通信協(xié)議研究與優(yōu)化[D];北京郵電大學(xué);2012年
4 王海波;云計(jì)算中數(shù)據(jù)庫(kù)的關(guān)鍵問(wèn)題研究與實(shí)現(xiàn)[D];吉林大學(xué);2011年
5 田立明;基于Web的健康預(yù)測(cè)服務(wù)系統(tǒng)[D];大連理工大學(xué);2006年
,本文編號(hào):2370480
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2370480.html