針對(duì)西夏文字識(shí)別的特征提取及分類器研究
[Abstract]:Character recognition is a traditional subject in the field of machine recognition, and many research achievements have been made. The recognition of Chinese characters and ancient characters is an important research topic in the field of Chinese information processing. The research results of machine recognition have been commercialized and widely used in face recognition, fingerprint recognition, license plate recognition, office automation and financial and commercial affairs. Although there are many difficulties in character recognition, because Chinese characters are very important in practical application and have great significance in theoretical research, there are still many researches on this aspect. The recognition of Xixia characters belongs to a new field to be developed at present. According to the research, there are many difficulties in the research on the recognition of Xixia characters based on the form of Chinese characters. First, the ancient Xixia language has more than 6000 words, so it belongs to the large character set; Second, compared with Chinese characters, Xixia characters have more complex structure and complicated strokes, and most of them are more than 14 strokes, so the Xixia characters are character sets with high similarity. Third, most of the handwritten Xixia characters have different sizes and lattice, which makes it more difficult and more complex to recognize the Xixia characters. The most important work in the digitization of ancient characters is the machine recognition of ancient characters, and the feature extraction in character recognition is the basis of the study of character recognition. Therefore, this paper mainly introduces the algorithm and process of feature extraction in the Xixia language. This paper first introduces the significance of the research on the recognition of the Xixia language and the current research situation at home and abroad, and then preprocesses the Xixia text image, including normalization, binarization, smoothing, thinning, tilting correction, etc. Then haar-like algorithm and Gabor wavelet algorithm are adopted to extract the features of the Xixia character image. Finally, the AdaBoost algorithm is used to classify and recognize the extracted features. The results of feature extraction using single haar-like algorithm and Gabor wavelet algorithm are compared, and good classification and recognition results are obtained.
【學(xué)位授予單位】:寧夏大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.43
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏淑霞;;“北方民族文字?jǐn)?shù)字化與西夏文獻(xiàn)研究國(guó)際研討會(huì)”綜述[J];西夏研究;2016年04期
2 李曉聰;涂剛毅;裴江;吳少鵬;;基于改進(jìn)Hough變換的檢測(cè)前跟蹤算法[J];現(xiàn)代防御技術(shù);2016年05期
3 許鵬;韓小忙;;西夏語(yǔ)詞匯研究述論[J];西夏研究;2016年03期
4 楊新武;馬壯;袁順;;基于弱分類器調(diào)整的多分類Adaboost算法[J];電子與信息學(xué)報(bào);2016年02期
5 顏學(xué)龍;任文帥;馬峻;;基于擴(kuò)展Haar特征的AdaBoost人臉檢測(cè)算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2015年09期
6 王海;蔡英鳳;袁朝春;;基于多模式弱分類器的AdaBoost-Bagging車輛檢測(cè)算法[J];交通運(yùn)輸工程學(xué)報(bào);2015年02期
7 王慶偉;應(yīng)自爐;;一種基于Haar-Like T特征的人臉檢測(cè)算法[J];模式識(shí)別與人工智能;2015年01期
8 江偉堅(jiān);郭躬德;賴智銘;;基于新Haar-like特征的Adaboost人臉檢測(cè)算法[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2014年02期
9 許劍;張洪偉;;Adaboost算法分類器設(shè)計(jì)及其應(yīng)用[J];四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年01期
10 霍艷娟;;西夏語(yǔ)言研究簡(jiǎn)論[J];寧夏社會(huì)科學(xué);2013年06期
相關(guān)會(huì)議論文 前1條
1 張平;王貴成;;Adaboost人臉檢測(cè)算法的速度影響因素分析及其改進(jìn)方法[A];第三屆中國(guó)智能計(jì)算大會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前2條
1 何飛;基于Gabor濾波的虹膜多特征提取及融合識(shí)別方法研究[D];吉林大學(xué);2015年
2 許亞美;手寫維吾爾文字識(shí)別若干關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 劉雨心;基于筆畫的脫機(jī)手寫體漢字識(shí)別與研究[D];太原理工大學(xué);2014年
2 齊光景;基于fast-AdaBoost算法的人臉檢測(cè)與識(shí)別方法研究[D];太原理工大學(xué);2014年
3 白瑩;手寫漢字的細(xì)化算法研究[D];西安電子科技大學(xué);2014年
4 盧婷;基于AdaBoost的分類器學(xué)習(xí)算法比較研究[D];華東理工大學(xué);2014年
5 孫抒雨;基于Gabor特征的人臉識(shí)別算法研究[D];遼寧科技大學(xué);2012年
6 姜文;維吾爾文單字符Gabor特征提取與識(shí)別[D];西安電子科技大學(xué);2012年
7 陳亮;Gabor小波特征提取技術(shù)及其在目標(biāo)識(shí)別中的應(yīng)用研究[D];南京理工大學(xué);2009年
8 楊全銀;基于Hough變換的圖像形狀特征檢測(cè)[D];山東大學(xué);2009年
9 趙萬(wàn)鵬;基于Adaboost算法的數(shù)字識(shí)別技術(shù)的研究與應(yīng)用[D];中國(guó)科學(xué)院研究生院(成都計(jì)算機(jī)應(yīng)用研究所);2006年
10 陳洪波;Hough變換及改進(jìn)算法與線段檢測(cè)[D];廣西師范大學(xué);2004年
,本文編號(hào):2342050
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2342050.html