三維散亂點云的特征提取方法研究
[Abstract]:With the development of 3D measurement technology, the high precision surface model of physical objects in the real world can be obtained effectively by digital scanning equipment, and it becomes the main means to obtain 3D point cloud data. 3D point cloud model has been widely used in pattern recognition, 3D reconstruction, model segmentation and other fields. Feature extraction as the bottom technology of 3D point cloud model processing has become the focus of image research. On the basis of summarizing the research status of feature extraction technology at home and abroad, this paper applies Markov Random Field (Markov Random Field,MRF) model to this field. The research ideas and solution framework are given from two aspects: establishing typical MRF model and extracting prominent feature points to establish MRF model. The main contents of this paper are as follows: 1. A global feature extraction algorithm for scattered point clouds based on Markov random field is proposed. Based on the classical MRF model, the model is established by fitting Gao Si distribution with histogram of observation point cloud distribution. According to Bayesian estimation, the priori problem is transformed into the solution of the maximum posterior probability, and the solution of the minimum energy of the random field is further deduced. The objective function is obtained by reduction, the function is solved and the feature points are extracted. Aiming at the problems of manual parameter adjustment and threshold setting in traditional algorithms, the algorithm combines the self-adaptability of typical MRF model flexibly, effectively avoids the disadvantages of traditional algorithms, and improves the self-adaptability and time efficiency of the algorithm. 2. An algorithm for feature extraction of scattered point clouds based on salient feature points is proposed. The core idea of this algorithm is to improve the typical MRF model. The main difference from the previous algorithm is the method of establishing random field model: the salience of scattered points is calculated by constructing the salience function of point cloud. The Reeb map was constructed by geodesic distance and saliency between the combined points, and the joint density function of MRF random field was obtained according to the distance from the point to the significant feature point and the distance from the center point to the significant feature point. The algorithm inherits the advantages of self-adaptability and avoids the problem of initial threshold setting and point cloud data Gao Si fitting. The point cloud feature extraction completely jumps out of the traditional curve fitting and feature parameter setting. 3. 3. These two feature extraction algorithms are mainly used in the virtual restoration project of Qin Terracotta Warriors and horses fragments. The experimental results show that the proposed algorithm can effectively extract the features of the terracotta warriors, and is more adaptive and efficient than the traditional algorithms, which lays a foundation for the subsequent virtual restoration of the terracotta warriors.
【學(xué)位授予單位】:西北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 孫殿柱;朱昌志;李延瑞;;散亂點云邊界特征快速提取算法[J];山東大學(xué)學(xué)報(工學(xué)版);2009年01期
2 梁新合;梁晉;郭成;曹巨名;王永信;;散亂點云的補償濾波[J];西安交通大學(xué)學(xué)報;2011年11期
3 孫殿柱;朱昌志;李延瑞;田中朝;;散亂點云局部型面參考數(shù)據(jù)的快速查詢算法[J];農(nóng)業(yè)機械學(xué)報;2009年05期
4 黃文明;彭希為;溫佩芝;吳曉軍;;保留幾何特征的散亂點云簡化方法[J];計算機工程與應(yīng)用;2009年28期
5 孫殿柱;朱昌志;范志先;李延瑞;;基于型面特征的三維散亂點云精簡算法[J];中國機械工程;2009年23期
6 孫永偉;孫殿柱;朱昌志;朱宗偉;;散亂點云切片數(shù)據(jù)快速獲取與優(yōu)化[J];哈爾濱工程大學(xué)學(xué)報;2010年11期
7 周學(xué)禮;萬旺根;;心內(nèi)膜散亂點云邊界點檢測算法研究[J];計算機應(yīng)用研究;2012年10期
8 王偉;唐民麗;吳恒玉;;大規(guī)模散亂點云數(shù)據(jù)的曲率估算及計算機實現(xiàn)[J];蘇州市職業(yè)大學(xué)學(xué)報;2011年03期
9 趙燦;湯春瑞;劉丹丹;;基于表面波變換的散亂點云去噪方法[J];組合機床與自動化加工技術(shù);2009年02期
10 倪敏敏;何雪明;薛瑩;鄧楊;;散亂點云的拓撲結(jié)構(gòu)重建算法的研究[J];機械設(shè)計與制造;2010年08期
相關(guān)會議論文 前10條
1 孫殿柱;孫肖霞;李延瑞;范志先;;散亂點云內(nèi)外邊界的自動提取技術(shù)[A];全國先進制造技術(shù)高層論壇暨制造業(yè)自動化、信息化技術(shù)研討會論文集[C];2005年
2 尚修剛;蔣慰孫;;模糊特征提取新算法[A];1997中國控制與決策學(xué)術(shù)年會論文集[C];1997年
3 潘榮江;孟祥旭;楊承磊;王銳;;旋轉(zhuǎn)體的幾何特征提取方法[A];第一屆建立和諧人機環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2005)論文集[C];2005年
4 薛燕;李建良;朱學(xué)芳;;人臉識別中特征提取的一種改進方法[A];第十三屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2006年
5 杜栓平;曹正良;;時間—頻率域特征提取及其應(yīng)用[A];2005年全國水聲學(xué)學(xué)術(shù)會議論文集[C];2005年
6 黃先鋒;韓傳久;陳旭;周劍軍;;運動目標的分割與特征提取[A];全國第二屆信號處理與應(yīng)用學(xué)術(shù)會議專刊[C];2008年
7 魏明果;;方言比較的特征提取與矩陣分析[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會議論文集[C];2009年
8 林土勝;賴聲禮;;視網(wǎng)膜血管特征提取的拆支跟蹤法[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
9 秦建玲;李軍;;基于核的主成分分析的特征提取方法與樣本篩選[A];2005年中國機械工程學(xué)會年會論文集[C];2005年
10 劉紅;陳光,
本文編號:2315188
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2315188.html