天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于深度學(xué)習(xí)和分類(lèi)集成的高速列車(chē)工況識(shí)別研究

發(fā)布時(shí)間:2018-10-08 11:53
【摘要】:中國(guó)高速鐵路快速發(fā)展,目前已成為世界高速鐵路的引領(lǐng)者。然而高速列車(chē)長(zhǎng)時(shí)間的高速運(yùn)行,使得列車(chē)走行部性能下降,這為列車(chē)的安全運(yùn)行帶來(lái)了巨大的隱患。走行部是高速列車(chē)的關(guān)鍵組成部分,對(duì)保障列車(chē)的安全性和乘客的舒適度起到重要作用。通過(guò)在列車(chē)走行部上安裝傳感器,采集并分析反映其運(yùn)行狀況的振動(dòng)信號(hào),是監(jiān)測(cè)列車(chē)運(yùn)營(yíng)狀態(tài)的主要技術(shù)之一。如何有效的從高速列車(chē)監(jiān)測(cè)數(shù)據(jù)中挖掘出有用的特征信息,并實(shí)現(xiàn)典型工況的有效識(shí)別具有重要的研究?jī)r(jià)值。列車(chē)振動(dòng)信號(hào)是非平穩(wěn)、非線性信號(hào),具有特征信息復(fù)雜、難辨識(shí)等特點(diǎn)。而傳統(tǒng)的工況識(shí)別方法存在特征提取不完備和識(shí)別性能不精確的問(wèn)題。本文設(shè)計(jì)了一種多視圖特征提取方法,并首次引入分類(lèi)集成技術(shù),提出了多視圖分類(lèi)集成(Multi-view Classification Ensemble,MV-CE)的列車(chē)工況的識(shí)別方法。該方法首先提取FFT系數(shù)、小波能量、EEMD模糊熵,并對(duì)FFT系數(shù)進(jìn)行Fisher比率特征選擇,從而得到列車(chē)振動(dòng)信號(hào)三個(gè)視圖的特征。然后利用K最近鄰分類(lèi)器和最小二乘支持向量機(jī)分別對(duì)三個(gè)視圖進(jìn)行初步識(shí)別。最后通過(guò)分類(lèi)熵投票策略集成多個(gè)分類(lèi)器的輸出結(jié)果。通過(guò)實(shí)驗(yàn)對(duì)比說(shuō)明該方法可以提取出完備的特征,并驗(yàn)證了具有多樣性集成模型的有效性。深度信念網(wǎng)絡(luò)(DeepBeliefNetwork,DBN)可以自動(dòng)的學(xué)習(xí)原始數(shù)據(jù)的特征,為高速列車(chē)工況識(shí)別的研究開(kāi)拓了新的思路。結(jié)合深度學(xué)習(xí)與分類(lèi)集成技術(shù)的優(yōu)點(diǎn),本文提出了一種DBN層次集成模型對(duì)高速列車(chē)工況進(jìn)行識(shí)別。首先提取列車(chē)振動(dòng)信號(hào)的FFT系數(shù)作為模型的可視層輸入。利用DBN自動(dòng)學(xué)習(xí)信號(hào)的層次特征。然后利用每一層特征訓(xùn)練支持向量機(jī)、K最近鄰、RBF神經(jīng)網(wǎng)絡(luò)三種分類(lèi)器。最后分別采用多數(shù)投票法、分類(lèi)熵投票策略、勝者全取三種集成策略進(jìn)行集成。實(shí)驗(yàn)結(jié)果表明,該模型的識(shí)別效果高于10種對(duì)比方法,并且其性能受網(wǎng)絡(luò)層數(shù)和隱藏層單元數(shù)目變化的影響遠(yuǎn)小于傳統(tǒng)DBN模型。列車(chē)走行部不同通道的振動(dòng)信號(hào)既存在互補(bǔ)性又存在冗余性。為了充分利用多通道振動(dòng)信號(hào)的互補(bǔ)信息,提出了基于相似度比率的通道篩選方法,并構(gòu)建了一種多通道深度信念網(wǎng)絡(luò)模型(Multi-channel Deep Belief Network,MDBN)進(jìn)行多通道的工況識(shí)別。首先提取所有通道振動(dòng)信號(hào)的FFT系數(shù)。然后,計(jì)算每個(gè)通道FFT特征的相似度比率,并選取相似度比率較大的若干通道。最后,構(gòu)建MDBN模型對(duì)所篩選的多通道數(shù)據(jù)進(jìn)行特征學(xué)習(xí),利用MDBN的共聯(lián)層實(shí)現(xiàn)多通道特征的融合,并進(jìn)行分類(lèi)識(shí)別。實(shí)驗(yàn)結(jié)果表明,MDBN的特征提取能力優(yōu)于DBN模型,并且MDBN的工況識(shí)別率高于DBN和DBN層次集成模型。
[Abstract]:With the rapid development of Chinese high-speed railway, it has become the leader of high-speed railway in the world. However, the high speed train running for a long time makes the train running performance decline, which brings a huge hidden trouble for the safe operation of the train. The running part is the key component of the high speed train and plays an important role in ensuring the safety of the train and the comfort of the passengers. It is one of the main techniques to monitor the train running state by installing the sensor on the train running part and collecting and analyzing the vibration signal which reflects the running condition of the train. How to effectively mine useful feature information from high-speed train monitoring data and realize effective recognition of typical working conditions has important research value. Train vibration signal is non-stationary and nonlinear. It has complex characteristic information and is difficult to identify. However, the traditional working condition recognition methods have the problems of incomplete feature extraction and inaccurate recognition performance. In this paper, a multi-view feature extraction method is designed, and the classification integration technique is introduced for the first time, and a multi-view classification integration (Multi-view Classification Ensemble,MV-CE) method for train operating condition identification is proposed. The method firstly extracts FFT coefficient, wavelet energy and EEMD fuzzy entropy, then selects the Fisher ratio feature of FFT coefficient, and obtains the characteristics of three views of train vibration signal. Then K nearest neighbor classifier and least square support vector machine are used to identify the three views. Finally, the output of multiple classifiers is integrated by the classification entropy voting strategy. The experimental results show that the proposed method can extract complete features and verify the effectiveness of the diversity integration model. Deep belief Network (DeepBeliefNetwork,DBN) can automatically learn the characteristics of the original data, which opens up a new idea for the study of high-speed train condition identification. Combined with the advantages of deep learning and classification integration technology, this paper presents a DBN hierarchical integration model to identify the operating conditions of high-speed trains. First, the FFT coefficient of train vibration signal is extracted as the visual layer input of the model. DBN is used to automatically learn the hierarchical features of signals. Then three kinds of classifiers of support vector machine (SVM) nearest neighbor RBF neural network are trained by each layer feature. At last, the majority voting method, the classified entropy voting strategy and the winner integration strategy are adopted respectively. The experimental results show that the recognition effect of this model is higher than that of 10 comparison methods, and its performance is much less affected by the number of network layers and the number of hidden layer units than the traditional DBN model. The vibration signals in different channels of train running are both complementary and redundant. In order to make full use of the complementary information of multi-channel vibration signals, a method of channel selection based on similarity ratio is proposed, and a multi-channel depth belief network model (Multi-channel Deep Belief Network,MDBN) is constructed to identify multi-channel operating conditions. First, the FFT coefficients of all channel vibration signals are extracted. Then, the similarity ratio of FFT features of each channel is calculated, and several channels with high similarity ratio are selected. Finally, the MDBN model is constructed to learn the features of the filtered multi-channel data, and the co-layer of MDBN is used to realize the fusion of multi-channel features, and the classification and recognition are carried out. The experimental results show that the feature extraction ability of MDBN is better than that of DBN model, and the recognition rate of MDBN is higher than that of DBN and DBN hierarchical integration model.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U270.7;TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 于萍;金煒東;秦娜;;基于EEMD降噪和流形學(xué)習(xí)的高速列車(chē)走行部故障特征提取[J];鐵道學(xué)報(bào);2016年04期

2 梁吉業(yè);馮晨嬌;宋鵬;;大數(shù)據(jù)相關(guān)分析綜述[J];計(jì)算機(jī)學(xué)報(bào);2016年01期

3 陳云風(fēng);王紅軍;楊燕;;基于聚類(lèi)集成的高鐵故障診斷分析[J];計(jì)算機(jī)科學(xué);2015年06期

4 郭麗麗;丁世飛;;深度學(xué)習(xí)研究進(jìn)展[J];計(jì)算機(jī)科學(xué);2015年05期

5 井波;金煒東;秦娜;吳旭東;;高速列車(chē)橫向減振器性能退化的特征提取[J];噪聲與振動(dòng)控制;2015年02期

6 吳小濤;楊錳;袁曉輝;龔?fù)?;基于峭度準(zhǔn)則EEMD及改進(jìn)形態(tài)濾波方法的軸承故障診斷[J];振動(dòng)與沖擊;2015年02期

7 丁康;黃志東;林慧斌;;一種譜峭度和Morlet小波的滾動(dòng)軸承微弱故障診斷方法[J];振動(dòng)工程學(xué)報(bào);2014年01期

8 楊春;殷緒成;郝紅衛(wèi);閆琰;王志彬;;基于差異性的分類(lèi)器集成:有效性分析及優(yōu)化集成[J];自動(dòng)化學(xué)報(bào);2014年04期

9 周東華;劉洋;何瀟;;閉環(huán)系統(tǒng)故障診斷技術(shù)綜述[J];自動(dòng)化學(xué)報(bào);2013年11期

10 李鑫濱;陳云強(qiáng);張淑清;;基于LS-SVM多分類(lèi)器融合決策的混合故障診斷算法[J];振動(dòng)與沖擊;2013年19期

,

本文編號(hào):2256645

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2256645.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6314e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com