基于深度學習的大規(guī)模圖數據挖掘
[Abstract]:With the extensive research and application of big data's thinking and deep learning, the graph structure is gradually used to represent the large-scale and complicated data in the real world. And deep mining the hidden information inside the large scale map data has gradually become the hot spot of research. In the era of information explosion, the traditional search engine based on keyword matching has been difficult to meet the needs of users who want to obtain information quickly, accurately and easily. Therefore, the knowledge map can meet the new query needs by building semantic information entity graph. Firstly, by reviewing the research contents of knowledge atlas by scholars, scientific research institutions and companies, this paper gives a comprehensive introduction to the development and construction methods of knowledge atlas, including the origin, development and final forming process of the concept of knowledge atlas; The methods involved in constructing knowledge map include ontology and entity extraction, graph construction, updating, maintenance, and knowledge map oriented internal structure mining and external extension application. Finally, the future development direction and challenges of knowledge map are prospected. Aiming at the problem of complex computation and sparse data in large-scale graph data mining, a network representation learning algorithm based on deep learning is proposed in this paper, which is improved on the basis of word2vec algorithm. By representing graph nodes as low-dimensional vectors, it is possible to use mature machine learning algorithms and linear algebra theories and tools in graph data mining. According to the multi-label classification task of graph nodes, the algorithm uses partial label information to guide the process of walking between nodes, and then uses the logical regression classification model to classify the feature representation of nodes. The experimental results show that the accuracy of label classification is significantly improved by guided walking. In addition, using the vector representation of graph nodes obtained by network representation learning algorithm, a combination method of generating edge feature representation is designed. At the same time, the link prediction of complex networks is realized by constructing a classification model of depth confidence networks.
【學位授予單位】:南京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP311.13;TP181
【參考文獻】
相關期刊論文 前10條
1 劉知遠;孫茂松;林衍凱;謝若冰;;知識表示學習研究進展[J];計算機研究與發(fā)展;2016年02期
2 方濱興;賈焰;李愛平;殷麗華;;網絡空間大搜索研究范疇與發(fā)展趨勢[J];通信學報;2015年12期
3 曹倩;趙一鳴;;知識圖譜的技術實現流程及相關應用[J];情報理論與實踐;2015年12期
4 莊嚴;李國良;馮建華;;知識庫實體對齊技術綜述[J];計算機研究與發(fā)展;2016年01期
5 陳維政;張巖;李曉明;;網絡表示學習[J];大數據;2015年03期
6 王元卓;賈巖濤;劉大偉;靳小龍;程學旗;;基于開放網絡知識的信息檢索與數據挖掘[J];計算機研究與發(fā)展;2015年02期
7 王知津;王璇;馬婧;;論知識組織的十大原則[J];國家圖書館學刊;2012年04期
8 楊思洛;韓瑞珍;;知識圖譜研究現狀及趨勢的可視化分析[J];情報資料工作;2012年04期
9 呂琳媛;;復雜網絡鏈路預測[J];電子科技大學學報;2010年05期
10 祝忠明;馬建霞;盧利農;李富強;劉巍;吳登祿;;機構知識庫開源軟件DSpace的擴展開發(fā)與應用[J];現代圖書情報技術;2009年Z1期
相關碩士學位論文 前5條
1 袁旭萍;基于深度學習的商業(yè)領域知識圖譜構建[D];華東師范大學;2015年
2 項靈輝;基于圖數據庫的海量RDF數據分布式存儲[D];武漢科技大學;2013年
3 曹浩;基于機器學習的雙語詞匯抽取問題研究[D];南開大學;2011年
4 關鍵;面向中文文本本體學習概念抽取的研究[D];吉林大學;2010年
5 曾錦麒;語義WEB的知識表示語言及其應用研究[D];中南大學;2004年
,本文編號:2235752
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2235752.html