基于熵和相關(guān)接近度的混合高斯目標檢測算法
發(fā)布時間:2018-09-08 10:35
【摘要】:針對固定模型個數(shù)的混合高斯模型的背景建模速度慢和運動目標的拖影問題,提出了一種基于Tsallis熵和相關(guān)接近度的改進混合高斯算法。該算法利用Tsallis熵對高斯模型自適應(yīng)地選擇模型個數(shù),加速背景建模;對于模型匹配判斷條件,不能很好地體現(xiàn)相鄰像素點的空間相關(guān)性的情況,提出了相關(guān)接近度作為模型更新的限定條件,以去除拖影。實驗結(jié)果表明,改進的算法在實時性、檢測正確率方面都有較好的改進。
[Abstract]:Aiming at the problem of slow modeling speed and drag and shadow of moving targets in the mixed Gao Si model with fixed number of models, an improved mixed Gao Si algorithm based on Tsallis entropy and correlation approach is proposed. The algorithm adaptively selects the number of models to Gao Si model by using Tsallis entropy, and accelerates the background modeling. For the model matching judgment condition, it can not well reflect the spatial correlation of adjacent pixels. The correlation proximity is used as the qualification condition of model updating to remove the drag shadow. The experimental results show that the improved algorithm has better performance in real time and detection accuracy.
【作者單位】: 蘭州理工大學(xué)計算機與通信學(xué)院;
【基金】:國家自然科學(xué)基金項目(61263019)資助
【分類號】:TP391.41
[Abstract]:Aiming at the problem of slow modeling speed and drag and shadow of moving targets in the mixed Gao Si model with fixed number of models, an improved mixed Gao Si algorithm based on Tsallis entropy and correlation approach is proposed. The algorithm adaptively selects the number of models to Gao Si model by using Tsallis entropy, and accelerates the background modeling. For the model matching judgment condition, it can not well reflect the spatial correlation of adjacent pixels. The correlation proximity is used as the qualification condition of model updating to remove the drag shadow. The experimental results show that the improved algorithm has better performance in real time and detection accuracy.
【作者單位】: 蘭州理工大學(xué)計算機與通信學(xué)院;
【基金】:國家自然科學(xué)基金項目(61263019)資助
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 艾凱文;胡桂明;李維維;;一種融合雨滴檢測算法的混合高斯模型[J];裝備制造技術(shù);2012年05期
2 王威;張鵬;高偉;王潤生;;基于局部層次化混合高斯模型的視頻序列運動目標檢測[J];信號處理;2009年05期
3 陳延濤;;一種改進的混合高斯模型運動目標檢測方法[J];四川大學(xué)學(xué)報(自然科學(xué)版);2009年05期
4 張燕平;白云球;趙勇;趙姝;;應(yīng)用改進混合高斯模型的運動目標檢測[J];計算機工程與應(yīng)用;2010年34期
5 李娟;邵春福;楊勵雅;;基于混合高斯模型的行人檢測方法[J];吉林大學(xué)學(xué)報(工學(xué)版);2011年01期
6 金廣智;石林鎖;白向峰;滕明春;;基于混合高斯模型的新型目標檢測系統(tǒng)[J];計算機應(yīng)用;2011年12期
7 田,
本文編號:2230271
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2230271.html
最近更新
教材專著