面向跨媒體信息的領(lǐng)域本體學習方法與應用研究
[Abstract]:Ontology learning is a method to construct ontology automatically or update existing ontology automatically. With the arrival of cross-media information age, the content and structure of Internet information are becoming more and more complex. It makes the construction and automatic updating of domain ontology a new research hotspot. Based on the analysis of cross-media information features and the characteristics of ontology application in the field of emergency management of civil aviation emergencies, this paper introduces the topic model of (Latent Dirichlet allocation (LDA), and studies the method and application of domain ontology learning. On the basis of deeply analyzing the theory and application of cross-media information structure, domain ontology characteristics and ontology learning methods, a domain ontology learning method based on LDA is proposed, and the framework of the method is given. Using the natural language processing method to obtain the candidate terminology set of domain ontology concepts, the LDA topic model of domain ontology is designed, and the LDA model training and topic inference are carried out by Gibbs sampling. The related terms of domain ontology are extracted automatically. Based on the subject probability distribution of domain ontology concepts, this paper studies the construction method of semantic relation recognition rules between domain ontology concepts, and gives the process of semantic relation recognition of concepts and related terms. On this basis, the mapping relationship between cross-media information and instance data is further studied, and the matching between instance and concept is realized based on LDA topic inference. The experimental results show that the domain ontology learning method based on LDA can effectively solve the problem of automatic updating of large-scale domain ontology concepts, relationships and examples, which is the information sharing of civil aviation emergency domain ontology under big data environment. Reasoning and semantic query provide better data support.
【學位授予單位】:中國民航大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.1
【參考文獻】
相關(guān)期刊論文 前10條
1 張際博;薛錦云;汪雄;夏鯨;熊小舟;;跨媒體組合方法研究[J];計算機工程與科學;2016年12期
2 王昊;王密平;蘇新寧;;面向本體學習的中文專利術(shù)語抽取研究[J];情報學報;2016年06期
3 陶曉玲;韋毅;孔德艷;張哲;;基于本體的網(wǎng)絡流量分類方法[J];計算機工程與設計;2016年01期
4 徐佳俊;楊樝;姚天f ;付中陽;;基于LDA模型的論壇熱點話題識別和追蹤[J];中文信息學報;2016年01期
5 金晶;;基于本體的電力知識跨媒體資源管理[J];計算機系統(tǒng)應用;2015年02期
6 梁喜濤;顧磊;;中文分詞與詞性標注研究[J];計算機技術(shù)與發(fā)展;2015年02期
7 支麗平;張珊靚;;基于專利本體的語義檢索研究[J];圖書館學研究;2014年07期
8 廉濤;馬軍;王帥強;崔超然;;LDA-CF:一種混合協(xié)同過濾方法[J];中文信息學報;2014年02期
9 陳舜華;王曉彤;郝志峰;蔡瑞初;肖曉軍;盧宇;;基于微博API的分布式抓取技術(shù)[J];電信科學;2013年08期
10 丁振凡;;Spring REST風格Web服務的Json消息封裝及解析研究[J];智能計算機與應用;2012年02期
相關(guān)博士學位論文 前4條
1 魏云超;跨媒體數(shù)據(jù)的語義分類和檢索[D];北京交通大學;2016年
2 于娟;基于文本的領(lǐng)域本體學習方法及其應用研究[D];大連理工大學;2010年
3 邱桃榮;面向本體學習的粒計算方法研究[D];北京交通大學;2009年
4 張鴻;基于相關(guān)性挖掘的跨媒體檢索研究[D];浙江大學;2007年
相關(guān)碩士學位論文 前4條
1 孫康;基于HBase的領(lǐng)域本體存儲與查詢方法研究[D];中國民航大學;2016年
2 李剪;民航應急管理領(lǐng)域本體模糊擴展方法及應用研究[D];中國民航大學;2015年
3 周文濤;基于SBPM的機場應急救援方案生成方法的應用研究[D];中國民航大學;2013年
4 郝冬生;基于網(wǎng)頁完整理解的人物信息抽取[D];吉林大學;2012年
,本文編號:2197555
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2197555.html