移動社交網絡中時空數據分析技術研究
[Abstract]:With the rapid development of wireless communication and mobile computing technology, GPS and Beidou global positioning navigation systems are widely used. The convenient location acquisition method has given birth to a large number of space-time trajectory data describing mobile objects (such as people, vehicles and animals). With the rapid growth of the social network service market and fierce competition, the current social network services tend to be mobile to form mobile social network. In mobile social networks, people with common interests use mobile devices such as mobile phones or tablets to communicate, allowing users to track and share location-related information at any time. Massive spatiotemporal data in mobile social networks bring new opportunities to study the mobile behavior of objects in mobile social networks. In this paper, a novel method of user mobility model construction and similarity measurement in mobile social networks is proposed to meet the needs of massive spatio-temporal data analysis in mobile social networks. In addition, in order to meet the requirements of real-time security monitoring, this paper proposes an algorithm based on Hausdorff distance based grid sequence clustering to detect the abnormal trajectory of large-scale trajectory data. In this paper, the real data set GeoLife published by Microsoft Asia Research Institute is used to evaluate the effectiveness and real-time performance of the proposed algorithm. The experimental results show that the proposed algorithm can effectively construct the mobile model of mobile users and is superior to the traditional similarity measurement method in the accuracy of similarity measurement. In addition, the anomaly trajectory detection algorithm proposed in this paper not only effectively detects abnormal behavior, but also greatly reduces the time consumption of the traditional anomaly detection algorithm, and makes a certain contribution to the on-line real-time anomaly detection.
【學位授予單位】:南京大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP393.09;TP301.6
【相似文獻】
相關期刊論文 前10條
1 ;基于位置的手機社交網絡“貝多”正式發(fā)布[J];中國新通信;2008年06期
2 曹增輝;;社交網絡更偏向于用戶工具[J];信息網絡;2009年11期
3 ;美國:印刷企業(yè)青睞社交網絡營銷新方式[J];中國包裝工業(yè);2010年Z1期
4 李智惠;柳承燁;;韓國移動社交網絡服務的類型分析與促進方案[J];現(xiàn)代傳播(中國傳媒大學學報);2010年08期
5 賈富;;改變一切的社交網絡[J];互聯(lián)網天地;2011年04期
6 譚拯;;社交網絡:連接與發(fā)現(xiàn)[J];廣東通信技術;2011年07期
7 陳一舟;;社交網絡的發(fā)展趨勢[J];傳媒;2011年12期
8 殷樂;;全球社交網絡新態(tài)勢及文化影響[J];新聞與寫作;2012年01期
9 許麗;;社交網絡:孤獨年代的集體狂歡[J];上海信息化;2012年09期
10 李玲麗;吳新年;;科研社交網絡的發(fā)展現(xiàn)狀及趨勢分析[J];圖書館學研究;2013年01期
相關會議論文 前10條
1 趙云龍;李艷兵;;社交網絡用戶的人格預測與關系強度研究[A];第七屆(2012)中國管理學年會商務智能分會場論文集(選編)[C];2012年
2 宮廣宇;李開軍;;對社交網絡中信息傳播的分析和思考——以人人網為例[A];首屆華中地區(qū)新聞與傳播學科研究生學術論壇獲獎論文[C];2010年
3 楊子鵬;喬麗娟;王夢思;楊雪迎;孟子冰;張禹;;社交網絡與大學生焦慮緩解[A];心理學與創(chuàng)新能力提升——第十六屆全國心理學學術會議論文集[C];2013年
4 畢雪梅;;體育虛擬社區(qū)中的體育社交網絡解析[A];第九屆全國體育科學大會論文摘要匯編(4)[C];2011年
5 杜p,
本文編號:2183158
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2183158.html