基于視覺顯著性的運(yùn)動(dòng)目標(biāo)跟蹤方法研究
[Abstract]:Moving target tracking is the process of finding out the position and state of the target in a continuously changing image sequence, and the stability and robustness of target tracking are the main problems to be dealt with. Because of the complexity and diversity of the real environment, the general algorithm has poor adaptability to the change of the size and shape of the moving object, so it can not effectively solve the problem of target tracking under the complex situation and sudden motion. It is difficult to achieve the accuracy and stability of target tracking because it can not recover automatically when the target moves too fast or when the target is lost. In order to solve the problem of moving target tracking under sudden motion, a moving target tracking algorithm based on visual saliency is proposed in this paper, which applies visual attention mechanism to moving target tracking framework. Using spatio-temporal salience algorithm to detect video sequence and generate visual saliency map, the target feature representation model is established from the salience region corresponding to visual salience map to achieve moving target tracking. The following works are done in this paper: (1) the frame of moving target tracking algorithm and the theoretical basis of visual salience technology are expounded. The commonly used moving target tracking algorithms are mean shift method, particle filter method, Kalman filter method, and so on. And visual salience detection algorithms are analyzed and experimented. (2) by analyzing the current mainstream spatio-temporal salience detection algorithms, there are PQFT and SEG algorithms, which are introduced into the framework of moving target tracking algorithm. Then the algorithm is designed to track the moving target. (3) the international common video sequence is used to track the moving object in order to lose the moving target. Whether the target can be tracked accurately and stably under the condition of sudden motion such as occlusion and complex environment, and compared with the current mainstream target tracking algorithm, the experiment and quantitative analysis are carried out. The experimental results show that the proposed method can accurately detect spatio-temporal targets in dynamic scenes such as camera shaking, and can effectively overcome the problem of tracking instability in complex and abrupt situations such as loss and occlusion of moving targets. It has strong robustness so that the target can be tracked accurately in complex scene.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 安寧;閆斌;熊杰;;基于壓縮感知的多尺度絕緣子跟蹤算法[J];傳感器與微系統(tǒng);2016年03期
2 張亞紅;楊欣;沈雷;周延培;周大可;;基于視覺顯著性特征的自適應(yīng)目標(biāo)跟蹤[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2015年02期
3 黎萬義;王鵬;喬紅;;引入視覺注意機(jī)制的目標(biāo)跟蹤方法綜述[J];自動(dòng)化學(xué)報(bào);2014年04期
4 朱明清;王智靈;陳宗海;;基于人類視覺智能和粒子濾波的魯棒目標(biāo)跟蹤算法[J];控制與決策;2012年11期
5 相入喜;李見為;;多特征自適應(yīng)融合的粒子濾波跟蹤算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2012年01期
6 夏猛;楊小牛;;星載三通道SAR-DPCA誤差分析與動(dòng)目標(biāo)定位方法[J];中國空間科學(xué)技術(shù);2011年02期
7 王一木;潘峗;嚴(yán)曉浪;;基于顏色的粒子濾波算法的改進(jìn)與全硬件實(shí)現(xiàn)[J];電子與信息學(xué)報(bào);2011年02期
8 張娟;毛曉波;陳鐵軍;;運(yùn)動(dòng)目標(biāo)跟蹤算法研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2009年12期
9 王明飛;慈林林;詹平;徐勇軍;;多信道無線傳感器網(wǎng)絡(luò)容量分析模型研究[J];通信學(xué)報(bào);2008年11期
相關(guān)碩士學(xué)位論文 前2條
1 丁曉鳳;基于MEAN SHIFT的多模板目標(biāo)跟蹤算法的研究[D];昆明理工大學(xué);2016年
2 胡t焧,
本文編號(hào):2173865
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2173865.html