不完備系統(tǒng)中先驗(yàn)概率優(yōu)勢(shì)關(guān)系粗集模型及其數(shù)據(jù)挖掘方法研究
[Abstract]:The starting point of rough set theory is to divide the unknown information according to the existing knowledge, then determine the degree of support of each partition class to a certain concept, and express it with three approximate sets: positive domain, negative domain and boundary domain. Decision rules are obtained by attribute reduction and attribute value reduction. In this paper, a rough set model based on conditional priori probability dominance relation is proposed, which is based on the statistics of attribute values of incomplete partial order decision system. Considering not only the different values of the same attribute but also the correlation between different attributes, all kinds of prior information can be fully utilized, so that the classification accuracy and classification quality are improved effectively. Secondly, because the uncertainty measurement method based on knowledge granularity is not accurate, it systematically reflects the uncertainty of the system. Therefore, a new improved rough entropy based on boundary domain and knowledge granularity is proposed in this paper. The improved rough entropy takes into account not only the uncertainty caused by the inaccuracy of partition, but also the uncertainty caused by the change of boundary domain, which makes the calculation of uncertainty measure more accurate. It opens up a new idea for the study of uncertainty measurement in conditional priori probabilistic advantage relation model. Finally, this paper introduces the reduction, distribution reduction and distribution reduction, and analyzes the relations among them and their properties in detail. At the same time, a heuristic reduction algorithm based on improved rough entropy and an assignment reduction algorithm based on objective assignment matrix are proposed. The theoretical analysis shows that the latter reduces the search efficiency because the process of obtaining reduction is too cumbersome, while the former directly removes unnecessary attributes from the system in the process of reduction, so the search time is saved and the search efficiency is improved.
【學(xué)位授予單位】:中國(guó)民航大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖厚國(guó);;一種基于遺傳算法的粗糙集約簡(jiǎn)方法[J];江蘇第二師范學(xué)院學(xué)報(bào);2016年06期
2 黃國(guó)順;文翰;;基于邊界域和知識(shí)粒度的粗糙集不確定性度量[J];控制與決策;2016年06期
3 駱公志;李震;黃衛(wèi)東;;加權(quán)先驗(yàn)概率優(yōu)勢(shì)關(guān)系的粗糙決策分析模型[J];統(tǒng)計(jì)與決策;2015年20期
4 黃國(guó)順;曾凡智;文翰;;基于條件概率的粗糙集不確定性度量[J];控制與決策;2015年06期
5 陶志;劉彩平;;一種改進(jìn)的先驗(yàn)概率粗集模型[J];中國(guó)民航大學(xué)學(xué)報(bào);2014年04期
6 韋碧鵬;呂躍進(jìn);李金海;;α優(yōu)勢(shì)關(guān)系下粗糙集模型的屬性約簡(jiǎn)[J];智能系統(tǒng)學(xué)報(bào);2014年02期
7 張卉;李續(xù)武;翟興隆;;優(yōu)勢(shì)粗集中的屬性約簡(jiǎn)和對(duì)象排序[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年09期
8 陶志;卞文靜;;基于先驗(yàn)概率優(yōu)勢(shì)關(guān)系的粗糙決策分析模型[J];中國(guó)民航大學(xué)學(xué)報(bào);2013年04期
9 莫京蘭;朱廣生;呂躍進(jìn);;優(yōu)勢(shì)信息系統(tǒng)中的啟發(fā)式屬性約簡(jiǎn)算法[J];計(jì)算機(jī)工程;2012年08期
10 張清國(guó);鄭雪峰;;基于知識(shí)粒度的不完備決策表的屬性約簡(jiǎn)的矩陣算法[J];計(jì)算機(jī)科學(xué);2012年02期
,本文編號(hào):2168545
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2168545.html