智能建筑火災(zāi)自動(dòng)報(bào)警系統(tǒng)的分析與設(shè)計(jì)
[Abstract]:With the development of science and technology innovation and intelligence, the intelligence of basic facilities related to people's daily life is also developing rapidly, and the intelligent building fire alarm system is one of the embodiment. It is of practical value to improve the detection efficiency, sensitivity and reliability of the fire alarm system and to realize the early detection and alarm of the fire. In this paper, the principle of automatic fire alarm system for intelligent building is studied, and the basic concepts, basic structure and basic performance of the system are introduced. Based on the research of data information recognition and digital image processing technology, this paper focuses on the information recognition and analysis method of image fire scene. After the image is processed by filtering, segmentation, optimization, noise elimination, and the optimized image samples are obtained, the characteristic information such as flame area, shape change and edge change are extracted and detected. A series of fire identification experiments were carried out to verify the reliability and effectiveness of the fire information recognition algorithm. In this paper, BP neural network algorithm is introduced into the fire scene image detection, combining the characteristics of the algorithm and the related mathematical model function, the experiment is constructed. The design of the experimental input-output unit and the specific topology of the neural network are given. A large number of fire image samples and interference image samples were compared with each other. The experimental results show that the fire alarm system based on BP neural network has more obvious advantages than the traditional fire alarm system, greatly reduces the false alarm rate of fire, and improves the accuracy of fire alarm. In the future, it can be widely used in modern intelligent building complex.
【學(xué)位授予單位】:東華理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 方軍利;;火災(zāi)自動(dòng)報(bào)警系統(tǒng)在智能建筑中的應(yīng)用[J];安防科技;2012年03期
2 陳俊海;;智能建筑中火災(zāi)自動(dòng)報(bào)警系統(tǒng)研究[J];中國(guó)城市經(jīng)濟(jì);2010年09期
3 黃松濤;石章松;張丕旭;;基于無(wú)線傳感器網(wǎng)絡(luò)的火災(zāi)現(xiàn)場(chǎng)定位技術(shù)研究[J];消防科學(xué)與技術(shù);2009年02期
4 王建平;范科峰;張素兵;莫瑋;;基于神經(jīng)網(wǎng)絡(luò)的多等級(jí)報(bào)警系統(tǒng)[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2009年02期
5 蔡家楣;蔡其星;江頡;;基于遺傳神經(jīng)網(wǎng)絡(luò)分析的內(nèi)網(wǎng)用戶行為審計(jì)系統(tǒng)[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2009年02期
6 劉海霞;隋虎林;谷安永;;火災(zāi)報(bào)警控制系統(tǒng)通信數(shù)據(jù)信息識(shí)別的研究[J];消防科學(xué)與技術(shù);2008年08期
7 董文輝;李寧寧;梅志斌;徐放;;歐美國(guó)家火災(zāi)報(bào)警系統(tǒng)規(guī)范介紹及啟示[J];消防科學(xué)與技術(shù);2008年06期
8 衣光照;趙加勇;毛勤;劉碩;;談智能建筑的火災(zāi)自動(dòng)報(bào)警與消防聯(lián)動(dòng)控制[J];科技風(fēng);2008年09期
9 李堯;張莉;單欣;;智能建筑中的火災(zāi)自動(dòng)報(bào)警系統(tǒng)設(shè)計(jì)分析[J];安防科技;2008年02期
10 劉翱;馬曉茜;;基于微粒群算法和模糊神經(jīng)網(wǎng)絡(luò)的火災(zāi)探測(cè)研究[J];消防科學(xué)與技術(shù);2007年06期
,本文編號(hào):2167474
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2167474.html