天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

在線推薦系統(tǒng)消費者采納意向的影響機理研究

發(fā)布時間:2018-08-03 10:54
【摘要】:近年來,在電商網(wǎng)站的帶動下,推薦系統(tǒng)不斷發(fā)展。目前關于推薦系統(tǒng)的研究多集中于推薦系統(tǒng)算法設計優(yōu)化方面,從消費者角度研究推薦系統(tǒng)的相關文獻較少,本研究從消費者角度出發(fā)研究推薦系統(tǒng)對消費者采納意向的影響機理,將有助于完善推薦系統(tǒng)設計,提高推薦服務質量。本文基于消費者視角,結合技術接受模型和信息系統(tǒng)成功模型,以推薦系統(tǒng)特征為自變量,構建推薦系統(tǒng)對消費者采納意向影響模型,分別以手機和圖書為搜尋品和體驗品的代表,通過問卷調(diào)查法收集有效問卷386份,并借助smart PLS軟件對研究模型進行結構方程檢驗分析,最后對完善推薦系統(tǒng)提出建議。主要結論如下:(1)推薦系統(tǒng)可以從信息質量、系統(tǒng)質量和交互質量三個方面進行評價,信息質量可以從推薦準確性、推薦多樣性、推薦新穎性、推薦關聯(lián)性等方面進行衡量,系統(tǒng)質量可以從界面設計和推薦解釋等方面進行衡量,交互質量可以從系統(tǒng)交互質量和用戶間交互質量等方面進行衡量;(2)對于搜尋品來說,推薦準確性、系統(tǒng)交互質量、推薦多樣性、推薦關聯(lián)性、界面設計對采納意向既有間接影響,也有直接影響。而對于體驗品來講,推薦準確性、推薦解釋、界面設計、系統(tǒng)交互質量、用戶間交互質量對采納意向有間接影響,而且也有直接影響;(3)對于搜尋品來說,推薦系統(tǒng)特征對采納意向的影響程度由大到小依次是系統(tǒng)交互質量、推薦準確性、推薦多樣性、界面設計、推薦關聯(lián)性。對于體驗品,推薦系統(tǒng)特征對采納意向的影響程度由大到小依次是用戶間交互質量、界面設計、推薦解釋、推薦準確性、系統(tǒng)交互質量;(4)推薦新穎性對采納意向的影響作用在兩類產(chǎn)品中都不顯著;(5)建議商家加深對推薦系統(tǒng)角色的認知,根據(jù)不同的產(chǎn)品類別設計推薦系統(tǒng),并拓展推薦系統(tǒng)的交互功能。
[Abstract]:In recent years, under the impetus of ecommerce website, recommendation system develops continuously. At present, most of the researches on recommendation system are focused on the optimization of the algorithm design of the recommendation system, and there are few related documents to study the recommendation system from the consumer's point of view. This study studies the influence mechanism of recommendation system on consumers' intention from the perspective of consumers, which will help to perfect the design of recommendation system and improve the quality of recommendation service. In this paper, based on the consumer perspective, combining the technology acceptance model and the information system success model, taking the characteristics of the recommendation system as the independent variable, this paper constructs the model of the impact of the recommendation system on the consumer's intention to adopt. Taking mobile phone and books as the representatives of search and experience, 386 valid questionnaires were collected by questionnaire, and the structural equation of the research model was tested and analyzed by smart PLS software. Finally, some suggestions were put forward to improve the recommendation system. The main conclusions are as follows: (1) recommendation system can be evaluated from three aspects: information quality, system quality and interaction quality. System quality can be measured from interface design and recommendation interpretation, interaction quality can be measured from system interaction quality and user interaction quality. (2) for search products, recommended accuracy, system interaction quality, etc. Recommendation diversity, recommendation relevance and interface design have both indirect and direct effects on the adoption intention. For experience products, recommendation accuracy, recommended interpretation, interface design, system interaction quality, and user interaction quality have indirect effects on the adoption intention, and also have a direct impact on the adoption intention; (3) for search products, The influence of the features of the recommendation system on the intention of adoption is followed by the quality of system interaction, the accuracy of recommendation, the diversity of recommendation, the design of interface and the relevance of recommendation. For the experience, the influence of the features of the recommendation system on the intention of adoption is in order of the interaction quality, interface design, recommendation interpretation, recommendation accuracy between the users. System interaction quality; (4) the effect of recommendation novelty on adoption intention is not significant in both categories of products; (5) it is suggested that merchants deepen their understanding of the role of recommendation system and design the recommendation system according to different product categories. And expand the interactive function of recommendation system.
【學位授予單位】:北方工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.3

【參考文獻】

相關期刊論文 前10條

1 孫魯平;張麗君;汪平;;網(wǎng)上個性化推薦研究述評與展望[J];外國經(jīng)濟與管理;2016年06期

2 楊一翁;王毅;孫國輝;;網(wǎng)絡推薦系統(tǒng)對消費者的營銷效果——技術接受模型視角[J];中國流通經(jīng)濟;2016年02期

3 余偉萍;祖旭;孫陽波;;不同產(chǎn)品類別在線評論對異質性消費者購買意愿影響[J];大連理工大學學報(社會科學版);2016年01期

4 萬君;秦宇;趙宏霞;;網(wǎng)絡用戶對在線圖書關聯(lián)推薦服務接受意愿影響研究——基于用戶認知視角[J];情報雜志;2014年08期

5 朱郁筱;呂琳媛;;推薦系統(tǒng)評價指標綜述[J];電子科技大學學報;2012年02期

6 張光前;雷彩華;呂曉敏;;電子商務推薦的研究現(xiàn)狀及其發(fā)展前景[J];情報雜志;2011年12期

7 劉建國;周濤;郭強;汪秉宏;;個性化推薦系統(tǒng)評價方法綜述[J];復雜系統(tǒng)與復雜性科學;2009年03期

8 馮秀珍;岳文磊;;基于TRA理論的虛擬團隊信息共享行為模型研究[J];情報雜志;2009年05期

9 吉雍慧;;數(shù)字圖書館中的檢索結果聚類和關聯(lián)推薦研究[J];現(xiàn)代圖書情報技術;2008年02期

10 孫建軍;成穎;柯青;;TAM模型研究進展——模型演化[J];情報科學;2007年08期

相關博士學位論文 前3條

1 許應楠;面向知識推薦服務的消費者在線購物決策研究[D];南京理工大學;2012年

2 劉倩;基于客戶關系發(fā)展階段的推薦系統(tǒng)特性需求分析[D];華中科技大學;2011年

3 劉蓓琳;電子商務用戶個性化推薦技術接受影響因素研究[D];中國礦業(yè)大學(北京);2009年

相關碩士學位論文 前2條

1 曾賽;基于社交網(wǎng)絡信任模型的商品推薦系統(tǒng)[D];華南理工大學;2012年

2 宋輝;電子商務推薦系統(tǒng)用戶采納影響因素研究[D];哈爾濱工業(yè)大學;2011年



本文編號:2161523

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2161523.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶8fe6d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com