基于二部網(wǎng)絡(luò)分析的推薦算法研究及其應(yīng)用
[Abstract]:With the rapid development and popularization of the network, people's life is closely related to the network. The overloading of housing information over the network has become a big problem for the users of the purchase or rental housing. With the housing site and the housing rental in the intermediary websites, the second-hand housing is more and more information and some information can not be updated, making it difficult for the users. The important problem facing the relevant websites is how to provide the real and accurate housing to the users in real time and accurately, and the effective way to solve this problem is the personalized recommendation system. The author participated in the part of the development workers of the 365 house network housing purchase and rental recommendation system. According to the needs of the project, this paper studies the personalized recommendation method of the house from the angle of two network analysis, and designs and develops the corresponding house recommendation system. The main research work and results are as follows: (1) according to the characteristics of the data of the house recommendation system, this paper proposes a recommendation algorithm based on the two network community mining. The two graph is used to express the rating matrix of user project. We put forward two network community mining labeling algorithms. First, we divide the users into the community, then divide the recommended users into the most relevant communities, and then use the similarity between users to recommend them. The algorithm fully considers the relationship between the users and the community, and the users. Between the similarity between the projects and identifying the potential interests of the user, the experimental results show that the proposed results of the algorithm have a higher accuracy compared with other similar recommendation algorithms. (2) a hybrid recommendation algorithm which combines the Jaccard index with the singular value decomposition in the two network link prediction is proposed. The algorithm first uses the algorithm to calculate the algorithm. The similarity index matrix of the recommended house is obtained by the method. Then we use the singular value decomposition algorithm to complement the zero element of the Jaccard index matrix and get a complete recommendation list. We propose an algorithm to update the dynamic increment of the Jaccard index and the singular value decomposition to adapt to the dynamic change of the score table. Compared with other relevant recommendation algorithms, it has high recommendation accuracy and recall rate. (3) a recommendation system for the purchase and lease of 365 house net houses is designed and developed. In this system, a recommendation algorithm based on community mining and a hybrid recommendation algorithm combined with Jaccard index and singular value decomposition are applied. The demand analysis of the purchase and leasing recommendation system is carried out, and the overall design scheme of the system framework is presented. The module structure of the system and the realization of each module are introduced.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李穎基,彭宏,鄭啟倫,曾煒;自動(dòng)分層推薦算法[J];計(jì)算機(jī)應(yīng)用;2002年11期
2 徐義峰;徐云青;劉曉平;;一種基于時(shí)間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
3 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
4 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
5 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
6 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
7 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
8 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期
9 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
10 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
相關(guān)會(huì)議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號(hào):2141499
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2141499.html