基于BIRCH-LKD的在站車輛中時(shí)異常檢測(cè)算法
發(fā)布時(shí)間:2018-06-23 11:16
本文選題:車輛中時(shí) + 異常檢測(cè); 參考:《北京理工大學(xué)學(xué)報(bào)》2017年11期
【摘要】:針對(duì)鐵路車輛在站中轉(zhuǎn)作業(yè)異常較多的情況,提出基于BIRCH-LKD的在站車輛中時(shí)異常檢測(cè)算法.該算法以車輛中時(shí)序列為研究對(duì)象,不考慮異常值的具體形式,對(duì)序列分組,引入中時(shí)序列特征向量,做類球形簇轉(zhuǎn)化;采用基于劃分的顯性異常檢測(cè)方法得到中時(shí)序列特征向量的聚類特征樹,查找序列顯性異常,縮小異常檢測(cè)范圍;利用隱性異常檢測(cè)算法計(jì)算剩余數(shù)據(jù)對(duì)象的K距離,根據(jù)距離差值變化規(guī)律,篩選序列隱性異常;最后,利用中時(shí)序列中位數(shù)異常判定條件,排除下界異常,實(shí)現(xiàn)中時(shí)序列的異常檢測(cè).實(shí)驗(yàn)結(jié)果表明,該算法檢出率高,能夠快速識(shí)別中時(shí)序列異常值,有效率達(dá)85%以上,去除異常值后的中時(shí)序列符合實(shí)際情況的趨勢(shì)且更加平穩(wěn).
[Abstract]:A BIRCH-LKD algorithm based on BIRCH-LKD is proposed to detect abnormal railway vehicles in station. The algorithm takes the vehicle time series as the research object, does not consider the concrete form of the outliers, and introduces the middle time sequence feature vector to transform the sequence into spherical clusters. Based on the explicit anomaly detection method based on partition, the clustering feature tree of middle time sequence feature vector is obtained to find the sequence dominant anomaly and narrow the range of anomaly detection, and to calculate the K distance of the remaining data object by using the hidden anomaly detection algorithm. According to the variation rule of distance difference, the hidden anomaly of the sequence is screened. Finally, the anomaly detection of the middle time sequence is realized by using the condition of the median anomaly of the middle time sequence to exclude the lower bound anomaly. The experimental results show that the algorithm has a high detection rate and can quickly identify the outliers of middle time series, and the effective rate is more than 85%. The time series after removing the outliers are in line with the trend of the actual situation and are more stable.
【作者單位】: 北京交通大學(xué)交通運(yùn)輸學(xué)院;中國(guó)鐵路總公司信息技術(shù)中心;
【基金】:中國(guó)鐵路總公司(省部級(jí))科技研究開發(fā)計(jì)劃課題(2014X009-A)
【分類號(hào)】:TP311.13;U292.11
,
本文編號(hào):2056942
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2056942.html
最近更新
教材專著