基于群體智能算法的RFID系統(tǒng)防沖突算法設(shè)計(jì)
本文選題:射頻識(shí)別 + 讀寫(xiě)器防沖突 ; 參考:《哈爾濱工程大學(xué)》2016年碩士論文
【摘要】:近年來(lái),無(wú)線射頻識(shí)別(Radio Frequency Identification ---RFID)技術(shù)應(yīng)用日益廣泛,而在RFID技術(shù)應(yīng)中存在的一些急需要解決的問(wèn)題。在這些問(wèn)題當(dāng)中,讀寫(xiě)器之間的沖突問(wèn)題很少有人去研究,而讀寫(xiě)器之間發(fā)生沖突對(duì)整個(gè)系統(tǒng)是很不利的,它影響系統(tǒng)穩(wěn)定性,影響工作效率。因此,為了解決讀寫(xiě)器之間發(fā)生沖突的問(wèn)題,提出了用改進(jìn)布谷鳥(niǎo)算法來(lái)進(jìn)行RFID系統(tǒng)優(yōu)化的方法。在解決讀寫(xiě)器沖突的問(wèn)題過(guò)程中,分析了讀寫(xiě)器的網(wǎng)絡(luò)構(gòu)成原理,采用圖論的方法構(gòu)建了讀寫(xiě)器防沖突問(wèn)題的數(shù)學(xué)模型,該數(shù)學(xué)模型是個(gè)包含多個(gè)變量的函數(shù)表達(dá)式。這樣,所要解決的問(wèn)題變成對(duì)數(shù)學(xué)模型進(jìn)行優(yōu)化的問(wèn)題。而解決此類函數(shù)優(yōu)化問(wèn)題可以利用群體智能算法,例如蟻群算法、遺傳算法、布谷鳥(niǎo)算法等。本文選用了布谷鳥(niǎo)算法。在對(duì)基本布谷鳥(niǎo)算法進(jìn)行分析后,又借鑒了其他的群體智能算法的改進(jìn)方法,本文提出了一種對(duì)基本布谷鳥(niǎo)算法的改進(jìn)算法,稱之為群體共生布谷鳥(niǎo)算法。該算法利用在自然界中多種群更容易存活的原則,對(duì)基本布谷鳥(niǎo)算法的初始種群分成若干個(gè)子種群,改進(jìn)算法在運(yùn)行過(guò)程中,通過(guò)各個(gè)子種群之間互相傳遞優(yōu)勢(shì)信息,使得各種群的優(yōu)秀個(gè)體共享優(yōu)勢(shì)信息,更有利于發(fā)現(xiàn)函數(shù)的最優(yōu)解。實(shí)驗(yàn)結(jié)果表明:改進(jìn)算法在測(cè)試函數(shù)上表現(xiàn)較好;具有收斂速度快,求解精度高,運(yùn)行時(shí)間短的特點(diǎn)。所以,該算法對(duì)RFID系統(tǒng)讀寫(xiě)器防沖突模型優(yōu)化結(jié)果較好,能夠得到比較理想的實(shí)驗(yàn)數(shù)據(jù)。該算法對(duì)其他工程應(yīng)用中的優(yōu)化問(wèn)題的有一定的借鑒意義。
[Abstract]:In recent years, Radio Frequency Identification (RFID) technology has been widely used, but there are some urgent problems to be solved in RFID technology. Among these problems, the conflict between readers is rarely studied, but the conflict between readers is very harmful to the whole system, which affects the stability of the system and the efficiency of work. Therefore, in order to solve the conflict between readers, an improved cuckoo algorithm is proposed to optimize RFID system. In the process of solving the problem of reader conflict, this paper analyzes the principle of the reader's network structure, and constructs a mathematical model of the reader's conflict prevention problem by using graph theory. The mathematical model is a functional expression with multiple variables. In this way, the problem to be solved becomes the optimization of the mathematical model. To solve this kind of function optimization problem, we can use swarm intelligence algorithm, such as ant colony algorithm, genetic algorithm, cuckoo algorithm and so on. This paper chooses the cuckoo algorithm. After analyzing the basic cuckoo algorithm and referring to other improved methods of swarm intelligence algorithm, this paper proposes an improved algorithm for the basic cuckoo algorithm, which is called the colony symbiotic cuckoo algorithm. Based on the principle that many populations are easier to survive in nature, the algorithm divides the initial population of the basic Cuckoo algorithm into several sub-populations. It is more advantageous to find the optimal solution of the function by making the excellent individuals of various groups share the superior information. The experimental results show that the improved algorithm performs well in the test function and has the advantages of fast convergence, high accuracy and short running time. Therefore, the algorithm can optimize the anti-collision model of RFID system reader better, and can get ideal experimental data. The algorithm can be used for reference in other engineering applications.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.44;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳海濤;;云計(jì)算中基于改進(jìn)的布谷鳥(niǎo)算法的資源調(diào)度[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2016年01期
2 張毅;賀興時(shí);楊新社;;基于模擬退火與高斯擾動(dòng)的布谷鳥(niǎo)算法[J];紡織高;A(chǔ)科學(xué)學(xué)報(bào);2015年04期
3 高葉軍;連志剛;曹宇;;基于改進(jìn)布谷鳥(niǎo)算法的火電廠機(jī)組組合優(yōu)化[J];電氣自動(dòng)化;2015年04期
4 臧睿;劉延龍;;改進(jìn)的布谷鳥(niǎo)算法及相應(yīng)罰函數(shù)法的應(yīng)用[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年07期
5 陳華;張藝丹;;基于logistic模型的自適應(yīng)布谷鳥(niǎo)算法[J];計(jì)算機(jī)工程與應(yīng)用;2015年20期
6 明波;黃強(qiáng);王義民;;基于改進(jìn)布谷鳥(niǎo)算法的梯級(jí)水庫(kù)長(zhǎng)期優(yōu)化調(diào)度研究[J];水利水電快報(bào);2015年04期
7 薛浩然;張珂珩;李斌;彭晨輝;;基于布谷鳥(niǎo)算法和支持向量機(jī)的變壓器故障診斷[J];電力系統(tǒng)保護(hù)與控制;2015年08期
8 吳瓊;紀(jì)志成;吳定會(huì);;基于速度差分變異粒子群的RFID網(wǎng)絡(luò)優(yōu)化[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年02期
9 葉華喬;丁善婷;;基于改進(jìn)的布谷鳥(niǎo)算法在云計(jì)算資源的研究[J];計(jì)算機(jī)測(cè)量與控制;2014年12期
10 秦強(qiáng);馮蘊(yùn)雯;薛小鋒;;改進(jìn)布谷鳥(niǎo)算法在結(jié)構(gòu)可靠性分析中的應(yīng)用[J];系統(tǒng)工程與電子技術(shù);2015年04期
,本文編號(hào):2027051
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2027051.html