天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于多圖譜分割的融合算法研究

發(fā)布時間:2018-06-10 17:51

  本文選題:人腦MR + 多圖譜 ; 參考:《寧夏大學》2017年碩士論文


【摘要】:人體大腦結構復雜且功能各異,如海馬體、扁桃體、顳上回、小腦、腦干、尾狀核等關鍵腦結構與多種腦部疾病息息相關,對其精準分割是臨床診斷中醫(yī)生進行相關定量分析的前提,因此多圖譜分割技術成為了當前國內外的研究重點。多圖譜分割技術主要包括兩個關鍵步驟,分別為圖像配準和標記融合。將多個圖譜與目標圖像進行配準并選擇合適的標記融合算法對配準后的圖譜進行融合得到最終的分割結果。為了使得分割的結果更準確,需要選擇合適的標記融合算法,以便于配準后的圖像在融合過程中實現(xiàn)高精度,從而對每個初始分割中的信息進行有效的提取,使得最終的分割結果具有代表性。標記融合方法中用的比較廣泛的有多數表決算法(Majority Voting,MV)[1]、STAPLE算法[2](Simultaneous Truth and Performance Level Estimation)和COLLATE算法[3](Consensus Level,Labeler accuracy and Truth Estimation)等。MV沒有考慮到各個分割圖像的差異性,STAPLE算法沒有利用圖像的先驗信息。為了獲得更高的分割精度,本文首先對腦部MR圖像進行預處理,包括顱骨剔除、濾波、灰度歸一化以及直方圖匹配等處理并對多個組織進行配準,然后對基于配準的多圖譜融合算法進行深入的研究并進行改進,主要內容如下:(1)圍繞人腦MR圖像,研究分析了當前使用比較廣泛的MV融合算法和STAPLE融合算法,并使用這兩種方法對配準后的腦部圖像的多個組織進行融合,同時選擇與金標準的相似性測度作為融合結果的評價標準,將這兩種方法融合的結果與最優(yōu)單圖譜分割結果進行比較。(2)在MV融合算法的基礎上提出一種新的加權改進融合算法(Weight-Voting),利用圖譜和目標圖像之間的相似性測度作為圖像融合的權重,并分別對多個配準后的腦部組織進行融合,并將本文算法分別與最優(yōu)單圖譜、MV、STAPLE融合算法進行了比較。實驗結果表明,多圖譜分割方法分割精度要高于最優(yōu)單圖譜分割方法,本文提出的新融合改進算法性能優(yōu)于最優(yōu)單圖譜、MV以及STAPLE融合算法,驗證了本文提出的算法在醫(yī)學圖像分割方面的有效性和準確性。
[Abstract]:The complex and diverse structure of the human brain, such as the hippocampus, tonsils, superior temporal gyrus, cerebellum, brain stem, caudate nucleus, and other key brain structures are closely related to a variety of brain diseases. Accurate segmentation is the premise of quantitative analysis for doctors in clinical diagnosis, so multi-spectrum segmentation technology has become the focus of research at home and abroad. Multi-spectrum segmentation includes two key steps: image registration and label fusion. Finally, the final segmentation results are obtained by matching multiple maps with target images and selecting the appropriate label fusion algorithm. In order to make the segmentation result more accurate, it is necessary to select the appropriate label fusion algorithm, so that the registration image can achieve high accuracy in the fusion process, so that the information in each initial segmentation can be extracted effectively. The final segmentation results are representative. The majority voting algorithm (Majority VotingMV) [1] is a simple truth and performance level estimation algorithm [2] and a consensus level estimation algorithm [3]. MV does not take into account the difference of each segmented image and the prior information of the image. In order to achieve higher segmentation accuracy, the brain Mr image is preprocessed, including skull removal, filtering, gray normalization and histogram matching, and registration of multiple tissues is carried out. Then the multi-map fusion algorithm based on registration is deeply studied and improved. The main contents are as follows: 1) focusing on the human brain Mr image, the current widely used MV fusion algorithm and STAPLE fusion algorithm are studied and analyzed. The two methods are used to fuse multiple tissues of the brain image after registration, and the similarity measure with the gold standard is chosen as the evaluation criterion of the fusion results. Comparing the results of these two methods with the results of optimal single map segmentation, we propose a new weighted improved fusion algorithm, Weight-Votingn, based on the MV fusion algorithm. The similarity measure between the map and the target image is used as the measure of the similarity between the map and the target image. The weight of image fusion, The fusion of multiple brain tissues after registration was performed, and the proposed algorithm was compared with the optimal single map MVS-STAPLE fusion algorithm. The experimental results show that the segmentation accuracy of the multi-map segmentation method is higher than that of the optimal single-map segmentation method, and the performance of the improved fusion algorithm proposed in this paper is better than that of the optimal single-map MV and STAPLE fusion algorithms. The validity and accuracy of the proposed algorithm in medical image segmentation are verified.
【學位授予單位】:寧夏大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41

【參考文獻】

相關期刊論文 前7條

1 張明慧;盧振泰;張娟;陽維;陳武凡;張煜;;基于多圖譜活動輪廓模型的腦部圖像分割[J];計算機學報;2016年07期

2 溫銳;陳宏文;張雷;盧振泰;;基于引導濾波的多圖譜醫(yī)學圖像分割[J];南方醫(yī)科大學學報;2015年09期

3 焦蓬蓬;郭依正;劉麗娟;衛(wèi)星;;灰度共生矩陣紋理特征提取的Matlab實現(xiàn)[J];計算機技術與發(fā)展;2012年11期

4 陳崢;石勇鵬;吉書鵬;;一種改進的Otsu圖像閾值分割算法[J];激光與紅外;2012年05期

5 鄒文;金德勤;高利臣;;磁共振圖像質量控制及參數的優(yōu)化選擇[J];中國醫(yī)療設備;2008年03期

6 馬峰,唐澤圣,夏紹瑋;多尺度幾何活動曲線及MR圖像邊界提取[J];計算機學報;2000年08期

7 羅希平,田捷;用最大熵原則作多閾值選擇的條件迭代算法[J];軟件學報;2000年03期

相關碩士學位論文 前9條

1 王洋;基于多圖譜的人腦MR圖像的分析與可視化[D];上海交通大學;2015年

2 胡昊;基于多圖譜配準的海馬體自動分割方法研究[D];南方醫(yī)科大學;2014年

3 曹一揮;基于多圖譜醫(yī)學圖像分割的技術研究[D];中國科學院研究生院(西安光學精密機械研究所);2013年

4 劉瑩;圖像紋理的特征提取和分類方法研究[D];華中科技大學;2013年

5 郭其淼;多圖譜醫(yī)學圖像分割方法研究及應用[D];南京航空航天大學;2013年

6 陳雯艷;基于ROI多圖譜配準的海馬磁共振圖像分割[D];湖南大學;2012年

7 余俊杰;基于紋理的遙感圖像分類算法及其應用研究[D];湖南大學;2009年

8 劉明霞;基于紋理特征的圖像分類與檢索研究[D];山東師范大學;2006年

9 陳敏;基于紋理特征的遙感圖像分類技術研究[D];福州大學;2005年

,

本文編號:2004086

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/2004086.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶623ae***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com