基于計(jì)算機(jī)視覺的細(xì)絲直徑精密測量方法研究
本文選題:畸變校正 + 亞像素; 參考:《西安理工大學(xué)》2016年碩士論文
【摘要】:隨著測量技術(shù)的飛速發(fā)展,圖像測量成了近年來測量領(lǐng)域中出現(xiàn)的新的技術(shù)。伴隨著計(jì)算機(jī)技術(shù)、激光技術(shù)、微電子技術(shù)等新技術(shù)的發(fā)展和應(yīng)用,以及測量技術(shù)本身的進(jìn)步,圖像測量為測量技術(shù)提供了很多新的方法和手段。在測量學(xué)中,測量誤差與精度是對測量結(jié)果進(jìn)行分析的重要指標(biāo),在基于圖像的測量中,如何通過分析圖像來校正測量誤差,提高系統(tǒng)的測量精度,是圖像測量技術(shù)中一個(gè)重要的研究方向。本文通過圖像測量的方法,并引入亞像素邊緣檢測算法和相機(jī)畸變校正方法,以及利用自行設(shè)計(jì)的精密物體檢測硬件平臺(tái),進(jìn)行了細(xì)絲直徑的精密測量方法的研究。通過對細(xì)絲圖像特征的分析,應(yīng)用了亞像素級邊緣檢測算法來檢測細(xì)絲邊界,提高邊緣定位的精度,另外,通過設(shè)計(jì)標(biāo)定網(wǎng)格模板定位點(diǎn)精確提取的方法,利用校正公式進(jìn)行硬件檢測平臺(tái)中相機(jī)畸變的校正,具體的工作介紹如下:1、首先設(shè)計(jì)了一種使用遠(yuǎn)心鏡頭并搭配合適的相機(jī)和光源來進(jìn)行細(xì)絲檢測的成像系統(tǒng),并實(shí)現(xiàn)了該硬件系統(tǒng)。為了獲得清晰的成像,設(shè)計(jì)了對物距進(jìn)行精密調(diào)節(jié)的方法。通過利用遠(yuǎn)心鏡頭放大倍率不變的特性,以及設(shè)計(jì)的網(wǎng)格標(biāo)定模板和校準(zhǔn)絲標(biāo)定方法實(shí)現(xiàn)細(xì)絲直徑的精密測量的系統(tǒng)。2、在使用平面圓形網(wǎng)格模板對相機(jī)畸變進(jìn)行標(biāo)定的過程中,選取三個(gè)標(biāo)定點(diǎn),為了獲得標(biāo)定點(diǎn)的精確坐標(biāo),以標(biāo)定點(diǎn)區(qū)域的“十字形”交叉點(diǎn)作為形態(tài)特征進(jìn)行坐標(biāo)提取。在實(shí)現(xiàn)精確坐標(biāo)提取的過程中,首先綜合使用了多種圖像預(yù)處理的算法,并提出了一種先利用網(wǎng)格邊緣點(diǎn)求出擬合直線,用擬合直線交叉點(diǎn)得出像素級交叉點(diǎn)坐標(biāo),然后再利用空間矩亞像素算法獲得“十字形”交叉點(diǎn)精確坐標(biāo)的方法。3、為了獲得相機(jī)的像素與細(xì)絲真實(shí)物理尺寸的標(biāo)定關(guān)系,采用了三根已知寬度的光刻校準(zhǔn)絲來對放大倍數(shù)進(jìn)行標(biāo)定,在測量校準(zhǔn)絲寬度的過程中,使用基于多項(xiàng)式擬合的亞像素級邊緣檢測算法來獲得高精度邊緣坐標(biāo)。最后,采用MATLAB作為編程語言,實(shí)現(xiàn)了細(xì)絲直徑精密檢測系統(tǒng)的界面及算法,并采用毛絨作為試驗(yàn)樣品,實(shí)現(xiàn)了完整的測量過程,測量結(jié)果驗(yàn)證了系統(tǒng)的精度,并驗(yàn)證了系統(tǒng)設(shè)計(jì)的合理性。
[Abstract]:With the rapid development of measurement technology, image measurement has become a new technology in the field of measurement in recent years. With the development and application of computer technology, laser technology, microelectronics technology and measurement technology itself, image measurement provides many new methods and means for measurement technology. In the field of surveying, measurement error and precision are the important indexes to analyze the measurement results. In the image-based measurement, how to correct the measurement errors by analyzing the images to improve the measurement accuracy of the system, It is an important research direction in image measurement technology. In this paper, we introduce sub-pixel edge detection algorithm, camera distortion correction method and the precision object detection hardware platform designed by ourselves to study the precision measurement method of filament diameter through image measurement method and sub-pixel edge detection algorithm and camera distortion correction method. Based on the analysis of filaments' image features, a sub-pixel edge detection algorithm is applied to detect the edge of filaments to improve the accuracy of edge location. The correction formula is used to correct the distortion of the camera in the hardware detection platform. The specific work is as follows: 1. First of all, an imaging system using telecentric lens and matching the appropriate camera and light source to detect the filaments is designed. The hardware system is realized. In order to obtain clear imaging, a method of precise adjustment of object distance is designed. By using the invariant magnification of telecentric lens and the system of precision measurement of filament diameter using the grid calibration template and calibration wire calibration method, the camera distortion is calibrated by using the planar circular mesh template. In order to obtain the exact coordinates of the scalar points, the cross crossing points of the marked fixed points are used as the morphological features to extract the coordinates. In the process of exact coordinate extraction, various image preprocessing algorithms are used synthetically, and a fitting line is first obtained by using grid edge points, and pixel level intersection coordinates are obtained by fitting straight line intersection points. Then we use the spatial moment sub-pixel algorithm to obtain the precise coordinates of the "cross" intersection. In order to obtain the calibration relationship between the camera pixels and the real physical size of the filaments, Three lithographic calibration wires with known width are used to calibrate the magnification. In the process of measuring the width of calibrated wire, a sub-pixel edge detection algorithm based on polynomial fitting is used to obtain the high-precision edge coordinates. Finally, the interface and algorithm of the fine wire diameter precision detection system are realized by using MATLAB as programming language, and the plush is used as the test sample to realize the complete measurement process. The measurement results verify the accuracy of the system. The rationality of the system design is verified.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH74;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李文杰;何家峰;;一種改進(jìn)的A-W細(xì)化算法[J];計(jì)算機(jī)工程;2012年06期
2 葉松;趙文昌;;基于直方圖均衡化的圖像增強(qiáng)技術(shù)分析與Matlab實(shí)現(xiàn)[J];數(shù)字技術(shù)與應(yīng)用;2012年01期
3 申俊琦;胡繩蓀;馮勝強(qiáng);朱莉娜;;基于數(shù)學(xué)形態(tài)學(xué)的焊縫圖像邊緣提取[J];天津大學(xué)學(xué)報(bào);2010年04期
4 黃劍玲;鄒輝;;結(jié)合LOG算子和小波變換的圖像邊緣檢測方法[J];計(jì)算機(jī)工程與應(yīng)用;2009年21期
5 劉清;林土勝;;基于數(shù)學(xué)形態(tài)學(xué)的圖像邊緣檢測算法[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年09期
6 賈瑜;饒建輝;;一種對文字圖像細(xì)化的改進(jìn)Hilditch算法研究[J];武漢工業(yè)學(xué)院學(xué)報(bào);2006年03期
7 周富強(qiáng);胡坤;張廣軍;;基于共線特征點(diǎn)的攝像機(jī)鏡頭畸變校正[J];機(jī)械工程學(xué)報(bào);2006年09期
8 程開富;;全球CCD圖像傳感器生產(chǎn)狀況分析[J];電子元器件應(yīng)用;2006年06期
9 丁興號(hào);基于小波變換的亞像素邊緣檢測[J];儀器儀表學(xué)報(bào);2005年08期
10 朱穎,江澤濤;基于Sobel算子的亞像素邊緣檢測方法[J];南昌航空工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年02期
相關(guān)博士學(xué)位論文 前3條
1 董鴻燕;邊緣檢測的若干技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2008年
2 劉慶民;基于計(jì)算機(jī)視覺的小尺寸零件精密測量技術(shù)研究[D];吉林大學(xué);2006年
3 袁野;攝像機(jī)標(biāo)定方法及邊緣檢測和輪廓跟蹤算法研究[D];大連理工大學(xué);2002年
相關(guān)碩士學(xué)位論文 前5條
1 盛惠娟;DSA腦血管圖像的分割和中心線提取算法研究[D];中南大學(xué);2014年
2 韓亞麗;圖像精密測量算法研究[D];鄭州大學(xué);2010年
3 趙宇;基于亞像素邊緣估計(jì)的圖像放大方法[D];大連理工大學(xué);2009年
4 陳宇云;灰度圖像的邊緣檢測研究[D];電子科技大學(xué);2009年
5 劉亞威;空間矩亞像素圖像測量算法的研究[D];重慶大學(xué);2003年
,本文編號(hào):1889507
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1889507.html