基于三維運動捕捉數(shù)據(jù)關(guān)鍵幀的動畫合成研究
發(fā)布時間:2018-05-02 14:40
本文選題:運動捕捉 + 關(guān)鍵幀提取; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:隨著科技的不斷進步,動畫合成技術(shù)的應(yīng)用越來越廣泛。人們對動畫合成技術(shù)有了新的功能需求,那就是對現(xiàn)有的動作進行重用,從而產(chǎn)生一些不同的效果。即采用動畫合成技術(shù)給用戶一種強烈的視覺沖擊,并帶給他們震撼的喜劇效果。而現(xiàn)有的動畫合成技術(shù)不能滿足這種需求。針對該問題,本文作了相關(guān)的課題研究,旨在通過已有的動作生成一種與眾不同的動畫效果。本文首先從課題的研究背景和意義展開,深入研究課題的相關(guān)應(yīng)用情況和現(xiàn)存問題,設(shè)計并實現(xiàn)了本文的研究方法:一種基于三維運動捕捉數(shù)據(jù)關(guān)鍵幀的動畫合成方法。然后圍繞課題的相關(guān)工作,從動畫合成的技術(shù)內(nèi)容進行闡述,簡單介紹了運動合成和運動重定向在三維動畫合成領(lǐng)域中的技術(shù)特征,進一步介紹了二者所需的關(guān)鍵技術(shù),主要有關(guān)鍵幀提取技術(shù)和動作捕捉的分割技術(shù)。在已有的理論研究基礎(chǔ)上,本文設(shè)計了和提出了兩種關(guān)鍵幀提取方法。最后基于本文設(shè)計和提出的方法,利用插值的思想,設(shè)計并且實現(xiàn)了基于三維運動捕捉數(shù)據(jù)關(guān)鍵幀的動畫合成系統(tǒng)。本文主要研究內(nèi)容如下:(1)設(shè)計并實現(xiàn)了基于余弦距離層次聚類的運動捕捉數(shù)據(jù)關(guān)鍵幀提取方法。該方法充分利用關(guān)節(jié)點的旋轉(zhuǎn)量來作為分割運動捕捉數(shù)據(jù)的特征值,接著去除捕捉數(shù)據(jù)中的噪音,然后通過降維的方法將高維數(shù)據(jù)映射為低維數(shù)據(jù)。隨后用余弦距離計算相似度,緊接著采用層次聚類分割,將各個分割點和各段中的幀姿勢與均值誤差最小的幀作為關(guān)鍵幀序列。實驗表明,相比較基于速率的分割方法和基于曲率的分割方法,該方法具有較高的準確率和查全率。(2)提出了基于最優(yōu)分割的運動捕捉數(shù)據(jù)關(guān)鍵幀提取方法?紤]到基于余弦距離層次聚類的運動捕捉數(shù)據(jù)關(guān)鍵幀提取方法僅是通過經(jīng)驗啟發(fā)式設(shè)計的,我們對關(guān)鍵幀的求解過程做了進一步的擴展。該方法首先引入模型機制建立模型,運用該模型將運動捕捉數(shù)據(jù)的分割問題建模成一個有序樣本聚類問題。其次,采用最優(yōu)分割算法對運動捕捉數(shù)據(jù)進行分段,求出最小化段內(nèi)平方誤差和。最后提取出分割點和每段中幀姿態(tài)與均值誤差最小的幀作為關(guān)鍵幀。實驗結(jié)果表明,與DWT以及PAA算法進行相比,所提出的方法具有較好的可視化結(jié)果,所得關(guān)鍵幀在表達原始運動捕捉數(shù)據(jù)上具有一定優(yōu)勢,能夠?qū)υ歼\動捕捉數(shù)據(jù)進行較好的概括和總結(jié)。(3)設(shè)計并實現(xiàn)了基于三維運動捕捉數(shù)據(jù)關(guān)鍵幀的動畫合成系統(tǒng);谝陨系膬煞N方法,結(jié)合貝塞爾曲線算法,運用軟件設(shè)計過程中面向?qū)ο蟮乃枷?設(shè)計并實現(xiàn)了基于三維運動捕捉數(shù)據(jù)關(guān)鍵幀的動畫合成系統(tǒng)。該系統(tǒng)不僅界面友好,操作簡單,功能齊全,而且系統(tǒng)的動畫片段重用性高,能夠?qū)崿F(xiàn)別具一格的動畫效果,進一步驗證了方法的可用性。
[Abstract]:With the development of science and technology, the application of animation synthesis technology is more and more extensive. Animation synthesis technology has a new functional requirement, that is, to reuse the existing actions, thus producing some different effects. That is, using animation synthesis technology to give users a strong visual impact, and bring them shocking comedy effect. The existing animation synthesis technology can not meet this demand. To solve this problem, this paper makes a related research, aiming to create a distinctive animation effect through existing actions. In this paper, the research background and significance of the subject are discussed, and the related applications and existing problems are deeply studied. The research method of this paper is designed and implemented: an animation synthesis method based on the key frames of 3D motion capture data. Then around the related work of the subject, the technical content of animation synthesis is expounded, and the technical characteristics of motion synthesis and motion redirection in 3D animation synthesis field are briefly introduced, and the key technologies required by them are further introduced. There are key frame extraction techniques and motion capture segmentation techniques. Based on the existing theoretical research, this paper designs and proposes two key frame extraction methods. Finally, an animation synthesis system based on the key frames of 3D motion capture data is designed and implemented based on the method designed and proposed in this paper and the idea of interpolation. The main contents of this paper are as follows: 1) the key frame extraction method of motion capture data based on cosine distance hierarchical clustering is designed and implemented. This method makes full use of the rotation of the node as the eigenvalue of the segmentation motion capture data, then removes the noise from the captured data, and then maps the high-dimensional data to the low-dimensional data by reducing the dimension. Then the similarity is calculated by cosine distance, and then hierarchical clustering is used to segment the frame pose and the frame with the minimum mean error in each segmentation point and segment as the key frame sequence. Experimental results show that compared with rate-based segmentation and curvature based segmentation, the proposed method has high accuracy and recall rate. (2) A motion capture key frame extraction method based on optimal segmentation is proposed. Considering that the key frame extraction method of motion capture data based on cosine distance hierarchical clustering is only designed by empirical heuristic we extend the key frame solving process. Firstly, the model mechanism is introduced to model the segmentation of motion capture data as an ordered sample clustering problem. Secondly, the optimal segmentation algorithm is used to segment the motion capture data to minimize the sum of square error. Finally, the frame with the minimum error between the attitude and the mean value of each segment is extracted as the key frame. The experimental results show that the proposed method has better visualization results than DWT and PAA algorithms, and the key frames have some advantages in representing the original motion capture data. The animation synthesis system based on the key frame of 3D motion capture data is designed and implemented. Based on the above two methods and the algorithm of Bezier curve, an animation synthesis system based on the key frame of 3D motion capture data is designed and implemented by using the object-oriented idea in the software design process. The system not only has friendly interface, simple operation, complete function, but also has high reusability of animation fragment, which can realize unique animation effect, and further verify the usability of the method.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 郭燕;曾光;楊波;;基于頻率自適應(yīng)的雙二階巴特沃斯數(shù)字濾波方法[J];智能電網(wǎng);2016年12期
2 黃淼;王劉濤;張海朝;;基于Gabor小波變換與K-L高斯黎曼流形判別的人臉識別[J];計算機工程;2016年09期
3 翁國慶;;基于有序樣本聚類分析法和Logistic模型的閩楠苗高年生長規(guī)律研究[J];安徽農(nóng)學(xué)通報;2016年16期
4 王淑俠;張茜;王守霞;王關(guān)峰;高滿屯;;基于速度特征的在線手繪筆畫快速分割方法[J];西北工業(yè)大學(xué)學(xué)報;2016年02期
5 胡圓圓;干宗良;陳昌紅;崔子冠;劉峰;;監(jiān)控視頻中基于運動目標(biāo)顯著性的關(guān)鍵幀提取方法[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2016年01期
6 沈晴;班曉娟;常征;郭靖;;基于視頻的人機交互中動作在線發(fā)現(xiàn)與時域分割[J];計算機學(xué)報;2015年12期
7 吳鵬;李雯霖;宋文龍;;基于C-V模型無關(guān)曲率方向的快速分割算法[J];哈爾濱工程大學(xué)學(xué)報;2015年12期
8 李新華;趙娟;袁振宇;王晨e,
本文編號:1834329
本文鏈接:http://www.sikaile.net/kejilunwen/ruanjiangongchenglunwen/1834329.html
最近更新
教材專著